Computational Optimization and Applications

, Volume 52, Issue 1, pp 147–179

Sensitivity analysis of hyperbolic optimal control problems

Open Access


The aim of this paper is to perform sensitivity analysis of optimal control problems defined for the wave equation. The small parameter describes the size of an imperfection in the form of a small hole or cavity in the geometrical domain of integration. The initial state equation in the singularly perturbed domain is replaced by the equation in a smooth domain. The imperfection is replaced by its approximation defined by a suitable Steklov’s type differential operator. For approximate optimal control problems the well-posedness is shown. One term asymptotics of optimal control are derived and justified for the approximate model. The key role in the arguments is played by the so called “hidden regularity” of boundary traces generated by hyperbolic solutions.


Sensitivity analysis Optimal control problems Hyperbolic boundary value problems Linear partial differential operators Steklov-Poincaré operator Kondratiev weighted spaces 


  1. 1.
    Ammari, H.: An inverse initial boundary value problem for the wave equation in the presence of imperfections of small volume. SIAM J. Control Optim. 41, 1194–1211 (2002) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Berezin, F.A., Faddeev, L.D.: Remark on the Schrödinger equation with singular potential. Dokl. Akad. Nauk SSSR 137, 1011–1014 (1961). (Engl transl. in Soviet Math. Dokl. 2, 372–375 (1961)) MathSciNetGoogle Scholar
  3. 3.
    Cardone, G., Nazarov, S.A., Sokołowski, J.: Asymptotic analysis, polarization matrices and topological derivatives for piezoelectric materials with small voids. SIAM J. Control Optim. 48, 3925–3961 (2010) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Frémiot, G., Horn, W., Laurain, A., Rao, M., Sokołowski, J.: On the analysis of boundary value problems in nonsmooth domains. Dissertat. Math. 462 (2009) Google Scholar
  5. 5.
    Hendrickson, E., Lasiecka, I.: Numerical approximations and regularizations of Riccati equations arising in hyperbolic dynamics with unbounded control operators. Comput. Optim. Appl. 2, 343–390 (1993) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Hendrickson, E., Lasiecka, I.: Finite dimensional approximations of boundary control problems arising in partially observed hyperbolic systems. Dyn. Contin. Discrete Impuls. Syst. 1, 101–142 (1995) MathSciNetMATHGoogle Scholar
  7. 7.
    Hormander, L.: The Analysis of Linear Partial Differential Operators, vol. III. Springer, Berlin (1985) Google Scholar
  8. 8.
    Jackowska, L., Sokołowski, J., Żochowski, A., Henrot, A.: On numerical solution of shape inverse problems. Comput. Optim. Appl. 23, 231–255 (2002) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Karpeshina, Yu.E., Pavlov, B.S.: Interaction of the zero radius for the biharmonic and the polyharmonic equation. Mat. Zametki 40, 49–59 (1986) (in Russian) MathSciNetGoogle Scholar
  10. 10.
    Khludnev, A., Novotny, A., Sokołowski, J., Żochowski, A.: Shape and topology sensitivity analysis for cracks in elastic bodies on boundaries of rigid inclusions. J. Mech. Phys. Solids 57, 1718–1732 (2009) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Kurasov, P., Posilicano, A.: Finite speed of propagation and local boundary conditions for wave equations with point interactions. Proc. Am. Math. Soc. 133, 3071–3078 (2005) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Lagnese, J.: Stabilization of Thin Plates. SIAM, Philadelphia (1989) MATHCrossRefGoogle Scholar
  13. 13.
    Lagnese, J., Leugering, G.: Domain Decomposition Methods in Optimal Control of Partial Differential Equations. Birkhäuser, Basel (2004) MATHCrossRefGoogle Scholar
  14. 14.
    Landkof, N.S.: Fundamentals of Modern Potential Theory. Nauka, Moscow (1966) (in Russian) Google Scholar
  15. 15.
    Lasiecka, I.: Control Theory for Coupled PDE’s. CBMS-SIAM-NSF Lecture Notes. SIAM, Philadelphia (2002) CrossRefGoogle Scholar
  16. 16.
    Lasiecka, I., Lions, J.L., Triggiani, R.: Non-homogeneous boundary value problems for second order hyperbolic operators. J. Math. Pures Appl. 65, 149–192 (1986) MathSciNetMATHGoogle Scholar
  17. 17.
    Lasiecka, I., Sokołowski, J.: Sensitivity analysis of constrained optimal control problem for wave equation. SIAM J. Control Optim. 29, 1128–1149 (1991) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Lasiecka, I., Triggiani, R.: Sharp regularity results for second order hyperbolic equations of Neumann type. Ann Mat. Pura Appl. CLVII, 1128–1149 (1990) MathSciNetGoogle Scholar
  19. 19.
    Lasiecka, I., Triggiani, R.: Regularity theory of hyperbolic equations with non-homogeneous Neumann boundary conditions. J. Differ. Equ. 94, 112–164 (1991) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Lasiecka, I., Triggiani, R.: Control Theory for Partial Differential Equations. Cambridge University Press, Cambridge (2000) Google Scholar
  21. 21.
    Lasiecka, I., Triggiani, R., Zhang, X.: In: Differential Geometric Methods in the Control of Partial Differential Equations. Contemporary Math., pp. 227–327. AMS, Providence (2000) CrossRefGoogle Scholar
  22. 22.
    Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971) MATHGoogle Scholar
  23. 23.
    Lions, J.L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications, vols. 1 and 2. Springer, Berlin (1972) Google Scholar
  24. 24.
    Malanowski, K.: Stability and sensitivity analysis for optimal control problems with control-state constraints. Dissertat. Math. 394 (2001) Google Scholar
  25. 25.
    Malanowski, K., Sokołowski, J.: Sensitivity of solutions to convex, control constrained optimal control problems for distributed parameter systems. J. Math. Anal. Appl. 120, 240–263 (1986) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Maz’ya, V., Nazarov, S., Plamenevskij, B.: Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, vol. 1. Birkhäuser, Basel (2000) CrossRefGoogle Scholar
  27. 27.
    Nazarov, S.A.: Self-adjoint extensions of the Dirichlet problem operator in weighted function spaces. Mat. Sb. 137, 224–241 (1988) (English transl.: Math. USSR Sbornik 65, 229–247 (1990)) Google Scholar
  28. 28.
    Nazarov, S.A.: Asymptotic conditions at a point, self-adjoint extensions of operators and the method of matched asymptotic expansions. Am. Math. Soc. Transl. 198, 77–125 (1999) Google Scholar
  29. 29.
    Nazarov, S.A., Slutskij, A.S., Sokołowski, J.: Topological derivative of the energy functional due to formation of a thin ligament on a spatial body. Acta Univ. Lodz., Folia Math. 12, 39–72 (2005) MATHGoogle Scholar
  30. 30.
    Nazarov, S.A., Sokołowski, J.: Asymptotic analysis of shape functionals. J. Math. Pures Appl. 82, 125–196 (2003) MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Nazarov, S.A., Sokołowski, J.: Self-adjoint extensions of differential operators in application to shape optimization. C. R., Méc. 331, 667–672 (2003) MATHCrossRefGoogle Scholar
  32. 32.
    Nazarov, S.A., Sokołowski, J.: The topological derivative of the Dirichlet integral due to formation of a thin ligament. Sib. Math. J. 45, 341–355 (2004) CrossRefGoogle Scholar
  33. 33.
    Nazarov, S.A., Sokołowski, J.: Self-adjoint extensions for elasticity system in application to shape optimization. Bull. Pol. Acad. Sci., Math. 52, 237–248 (2004) MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Nazarov, S.A., Sokołowski, J.: Self-adjoint extensions for the Neumann Laplacian and applications. Acta Math. Sin. 22, 879–906 (2006) MATHCrossRefGoogle Scholar
  35. 35.
    Nazarov, S.A., Specovius-Neugebauer, M., Sokołowski, J.: Polarization matrices in anisotropic elasticity. Asymptot. Anal. 68, 189–221 (2010) MathSciNetMATHGoogle Scholar
  36. 36.
    Pavlov, B.S.: The theory of extension and explicitly soluble models. Usp. Mat. Nauk 42, 99–131 (1987) (Engl. transl. Soviet Math. Surveys 42, 127–168 (1987)) MATHGoogle Scholar
  37. 37.
    Pólya, G., Szegö, G.: Isoperimetric Inequalities in Mathematical Physics. Princeton University Press, Princeton (1951) MATHGoogle Scholar
  38. 38.
    Sakamoto, R.: Hyperbolic Boundary Value Problems. Cambridge University Press, Cambridge (1982) MATHGoogle Scholar
  39. 39.
    Sokołowski, J.: Differential stability of solutions to constrained optimization problems. Appl. Math. Optim. 13, 97–115 (1985) MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Sokołowski, J.: Sensitivity analysis of control constrained optimal control problems for distributed parameter systems. SIAM J. Control Optim. 25, 1542–1556 (1987) MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Sokołowski, J.: Shape sensitivity analysis of boundary optimal control problems for parabolic systems. SIAM J. Control Optim. 26, 763–787 (1988) MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Sokołowski, J., Żochowski, A.: On topological derivative in shape optimization. SIAM J. Control Optim. 37, 1251–1272 (1999) MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Sokołowski, J., Żochowski, A.: Topological derivative for optimal control problems. Control Cybern. 28, 611–626 (1999) MATHGoogle Scholar
  44. 44.
    Sokołowski, J., Żochowski, A.: Topological derivatives for elliptic problems. Inverse Probl. 15, 123–134 (1999) MATHCrossRefGoogle Scholar
  45. 45.
    Sokołowski, J., Żochowski, A.: Optimality conditions for simultaneous topology and shape optimization. SIAM J. Control Optim. 42, 1198–1221 (2003) MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Sokołowski, J., Żochowski, A.: Modelling of topological derivatives for contact problems. Numer. Math. 102, 145–179 (2005) MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Sokołowski, J., Żochowski, A.: Asymptotic analysis and topological derivatives for shape and topology optimization of elasticity problems in two spatial dimensions. Eng. Anal. Bound. Elem. 32, 533–544 (2008) CrossRefGoogle Scholar
  48. 48.
    Sokołowski, J., Zolesio, J.-P.: Introduction to Shape Optimization. Shape Sensitivity Analysis. Springer, Berlin (1992) MATHGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • Adam Kowalewski
    • 1
  • Irena Lasiecka
    • 2
    • 4
  • Jan Sokołowski
    • 3
    • 4
  1. 1.Institute of AutomaticsAGH University of Science and TechnologyCracowPoland
  2. 2.Department of MathematicsUniversity of VirginiaCharlottesvilleUSA
  3. 3.Institut Élie Cartan, UMR 7502 Nancy-Université-CNRS-INRIA, Laboratoire de MathématiquesUniversité Henri Poincaré Nancy 1Vandoeuvre Lès Nancy CedexFrance
  4. 4.Systems Research Institute of the Polish Academy of SciencesWarsawPoland

Personalised recommendations