Computational Optimization and Applications

, Volume 51, Issue 2, pp 709–728 | Cite as

Iterative methods for solving monotone equilibrium problems via dual gap functions



This paper proposes an iterative method for solving strongly monotone equilibrium problems by using gap functions combined with double projection-type mappings. Global convergence of the proposed algorithm is proved and its complexity is estimated. This algorithm is then coupled with the proximal point method to generate a new algorithm for solving monotone equilibrium problems. A class of linear equilibrium problems is investigated and numerical examples are implemented to verify our algorithms.


Gap function Double projection-type method Monotone equilibrium problem Proximal point method Global convergence Complexity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blum, E., Oettli, W.: From optimization and variational inequality to equilibrium problems. Math. Stud. 63(1–4), 123–145 (1994) MathSciNetMATHGoogle Scholar
  2. 2.
    Cohen, G.: Auxiliary problem principle and decomposition of optimization problems. J. Optim. Theory Appl. 32(3), 277–305 (1980) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Cohen, G.: Auxiliary problem principle extended to variational inequalities. J. Optim. Theory Appl. 59(2), 325–333 (1988) MathSciNetMATHGoogle Scholar
  4. 4.
    Konnov, I.V.: Combined Relaxation Methods for Variational Inequalities. Springer, Berlin (2001) MATHCrossRefGoogle Scholar
  5. 5.
    Konnov, I.V.: Application of the proximal point method to nonmonotone equilibrium problems. J. Optim. Theory Appl. 119(3), 317–333 (2003) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Konnov, I.V.: Generalized convexity and related topics. In: Konnov, I.V., Luc, D.T., Rubinov, A.M. (eds.) Combined Relaxation Methods for Generalized Monotone Variational Inequalities, pp. 3–31. Springer, Berlin (2007) Google Scholar
  7. 7.
    Krawczyk, J.B., Uryasev, S.: Relaxation algorithms to find Nash equilibria with economic applications. Environ. Model. Assess. 5(1), 63–73 (2000) CrossRefGoogle Scholar
  8. 8.
    Martinet, B.: Régularisation d’inéquations variationelles par approximations successives. Rev. Fr. Rech. Opér. 4, 154–159 (1970) MathSciNetGoogle Scholar
  9. 9.
    Mastroeni, G.: On auxiliary principle for equilibrium problems. In: Daniele, P., Giannessi, F., Maugeri, A. (eds.) Equilibrium Problems and Variational Models, pp. 289–298. Kluwer, Dordrecht (2003) CrossRefGoogle Scholar
  10. 10.
    Mastroeni, G.: Gap function for equilibrium problems. J. Glob. Optim. 27(4), 411–426 (2004) MathSciNetCrossRefGoogle Scholar
  11. 11.
    Moudafi, A.: Proximal point algorithm extended to equilibrium problems. J. Nat. Geom. 15(1–2), 91–100 (1999) MathSciNetMATHGoogle Scholar
  12. 12.
    Muu, L.D., Oettli, W.: Convergence of an adaptive penalty scheme for finding constrained equilibria. Nonlinear Anal. 18(12), 1159–1166 (1992) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Muu, L.D., Quoc, T.D.: Regularization algorithms for solving monotone Ky Fan’s inequalities with application to a Nash-Cournot equilibrium model. J. Optim. Theory Appl. 142(1), 185–204 (2009) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Nesterov, Y.: Dual extrapolation and its applications to solving variational inequalities and related problems. Math. Program. Ser. B 109(2–3), 319–344 (2007) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Nesterov, Y., Scrimali, L.: Solving strongly monotone variational and quasi-variational inequalities. CORE discussion paper #107, pp. 1–15 (2006) Google Scholar
  16. 16.
    Nguyen, V.H.: Lecture notes on equilibrium problems. CIUF-CUD Summer School on Optimization and Applied Mathematics, Nha Trang, Vietnam (2002) Google Scholar
  17. 17.
    Noor, M.A.: Auxiliary principle technique for equilibrium problems. J. Optim. Theory Appl. 122(2), 371–386 (2004) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Quoc, T.D., Muu, L.D.: Implementable quadratic regularization methods for solving pseudomonotone equilibrium problems. East-West J. Math. 6(2), 101–123 (2004) MathSciNetMATHGoogle Scholar
  19. 19.
    Quoc, T.D., Muu, L.D., Nguyen, V.H.: Extragradient algorithms extended to equilibrium problems. Optimization 57(6), 749–776 (2008) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970) MATHGoogle Scholar
  21. 21.
    Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Van, N.T.T., Strodiot, J.J., Nguyen, V.H.: A bundle method for solving equilibrium problems. Math. Program. 116(1–2), 529–552 (2009) MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Hanoi University of ScienceHanoiVietnam
  2. 2.Department of Electrical Engineering (ESAT/SCD) and OPTECK.U. LeuvenLeuvenBelgium
  3. 3.Institute of MathematicsHanoiVietnam

Personalised recommendations