Computational Optimization and Applications

, Volume 51, Issue 2, pp 835–866 | Cite as

Multigrid second-order accurate solution of parabolic control-constrained problems

  • S. González Andrade
  • A. Borzì


A mesh-independent and second-order accurate multigrid strategy to solve control-constrained parabolic optimal control problems is presented. The resulting algorithms appear to be robust with respect to change of values of the control parameters and have the ability to accommodate constraints on the control also in the limit case of bang-bang control. Central to the development of these multigrid schemes is the design of iterative smoothers which can be formulated as local semismooth Newton methods. The design of distributed controls is considered to drive nonlinear parabolic models to follow optimally a given trajectory or attain a final configuration. In both cases, results of numerical experiments and theoretical twogrid local Fourier analysis estimates demonstrate that the proposed schemes are able to solve parabolic optimality systems with textbook multigrid efficiency. Further results are presented to validate second-order accuracy and the possibility to track a trajectory over long time intervals by means of a receding-horizon approach.


Multigrid methods Semismooth Newton method Parabolic partial differential equations Optimal control theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allgöwer, F., Badgwell, T.A., Qin, J.S., Rawlings, J.B., Wright, S.J.: Nonlinear predictive control and moving horizon estimation—An introduction overview. In: Frank, P.M. (ed.) Advances in Control, Highlights of ECC’99, pp. 391–449 (1999), Chap. 5 Google Scholar
  2. 2.
    Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM, Philadelphia (1998) MATHCrossRefGoogle Scholar
  3. 3.
    Batista, M.: A method for solving cyclic block penta-diagonal systems of linear equations (2008). arXiv:0803.0874v3
  4. 4.
    Batista, M., Karawia, A.A.: The use of the Sherman-Morrison-Woodbury formula to solve cyclic block tri-diagonal and cyclic block penta-diagonal linear systems of equations. Appl. Math. Comput. 210, 558–563 (2009) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Benkert, K., Fischer, R.: An efficient implementation of the Thomas-Algorithm for block penta-diagonal systems on vector computers. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) Proceedings of the 7th International Conference on Computer Science, ICCS (2007) Google Scholar
  6. 6.
    Biegler, L.T., Ghattas, O., Heinkenschloss, M., Keyes, D., van Bloemen Waanders, B. (eds.) Real-Time PDE-Constrained Optimization, Computational Science and Engineering, vol. 3. SIAM, Philadelphia (2007) Google Scholar
  7. 7.
    Borzì, A.: High-order discretization and multigrid solution of elliptic nonlinear constrained optimal control problems. J. Comput. Appl. Math. 200, 67–85 (2007) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Borzì, A.: Multigrid methods for parabolic distributed optimal control problems. J. Comput. Appl. Math. 157, 365–382 (2003) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Borzì, A.: Space-time multigrid methods for solving unsteady optimal control problems. In: Biegler, L.T., Ghattas, O., Heinkenschloss, M., Keyes, D., van Bloemen Waanders, B. (eds.) Real-Time PDE-Constrained Optimization, Computational Science and Engineering, vol. 3. SIAM, Philadelphia (2007), Chap. 5 Google Scholar
  10. 10.
    Borzì, A., Griesse, R.: Distributed optimal control of lambda-omega systems. J. Numer. Math. 14, 17–40 (2006) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Borzì, A., Kunisch, K.: A multigrid scheme for elliptic constrained optimal control problems. Comput. Optim. Appl. 31, 309–333 (2005) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Borzì, A., Schulz, V.: Multigrid methods for PDE optimization. SIAM Rev. 51, 361–395 (2009) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Borzì, A., von Winckel, G.: Multigrid methods and sparse-grid collocation techniques for parabolic optimal control problems with random coefficients. SIAM J. Sci. Comput. 31, 2172–2192 (2009) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math. Comput. 31, 333–390 (1977) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Brézis, H., Crandall, M.-G., Pazy, A.: Perturbations of nonlinear maximal monotone sets in Banach spaces. Commun. Pure Appl. Math. 23, 123–144 (1970) MATHCrossRefGoogle Scholar
  16. 16.
    Dreyer, Th., Maar, B., Schulz, V.: Multigrid optimization in applications. J. Comput. Appl. Math. 120, 67–84 (2000) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Emmrich, E.: Two-step BDF time discretisation of nonlinear evolution problems governed by monotone operators with strongly continuous perturbations. Comput. Methods Appl. Math. 9, 37–62 (2009) MathSciNetMATHGoogle Scholar
  18. 18.
    Glashoff, K., Sachs, E.: On theoretical and numerical aspects of the bang-bang principle. Numer. Math. 29, 93–113 (1977) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Goldberg, H., Tröltzsch, F.: Second order sufficient optimality conditions for a class of non-linear parabolic boundary control problems. SIAM J. Control Optim. 31, 1007–1027 (1993) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Goldberg, H., Tröltzsch, F.: On a SQP–multigrid technique for nonlinear parabolic boundary control problems. In: Hager, W.W., Pardalos, P.M. (eds.) Optimal Control: Theory, Algorithms, and Applications, pp. 154–174. Kluwer Academic, Dordrecht (1998) Google Scholar
  21. 21.
    Hackbusch, W.: Parabolic multigrid methods. In: Glowinski, R., Lions, J.-L. (eds.) Computing Methods in Applied Sciences and Engineering VI. North-Holland, Amsterdam (1984) Google Scholar
  22. 22.
    Hackbusch, W.: Elliptic Differential Equations. Springer, New York (1992) MATHGoogle Scholar
  23. 23.
    Hackbusch, W.: On the fast solving of parabolic boundary control problems. SIAM J. Control Optim. 17, 231–244 (1979) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Hackbusch, W.: Numerical Solution of Linear and Nonlinear Parabolic Optimal Control Problems. Lecture Notes in Control and Information Science, vol. 30. Springer, Berlin (1981) Google Scholar
  25. 25.
    Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semi-smooth Newton method. SIAM J. Optim. 13, 865–888 (2003) MATHCrossRefGoogle Scholar
  26. 26.
    Hintermüller, M., Hoppe, R.H.W.: Goal-oriented adaptivity in control constrained optimal control of partial differential equations. SIAM J. Control Optim. 47, 1721–1743 (2008) MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Hinze, M.: A variational discretization concept in control constrained optimization: the linear-quadratic case. Comput. Optim. Appl. 30, 45–63 (2005) MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Horton, G., Vandewalle, S.: A space-time multigrid method for parabolic partial differential equations. SIAM J. Sci. Comput. 16(4), 848–864 (1995) MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Ito, K., Kunisch, K.: Asymptotic properties of receding horizon optimal control problems. SIAM J. Control Optim. 40(5), 1585–1610 (2002) MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Kunisch, K., Volkwein, S.: Proper orthogonal decomposition for optimality systems. ESAIM: Math. Model. Numer. Anal. 42, 1–23 (2008) MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971) MATHGoogle Scholar
  32. 32.
    Malanowski, K.: Convergence of approximations vs. regularity of solutions for convex, control-constrained optimal-control problems. Appl. Math. Optim. 8, 69–95 (1981) MathSciNetCrossRefGoogle Scholar
  33. 33.
    Meidner, D., Vexler, B.: Adaptive space-time finite element methods for parabolic optimization problems. SIAM J. Control Optim. 46, 116–142 (2007) MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Nagaiah, Ch., Kunisch, K., Plank, G.: Numerical solution for optimal control of the reaction-diffusion equations in cardiac electrophysiology. Comput. Optim. Appl. doi: 10.1007/s10589-009-9280-3
  35. 35.
    Neittaanmäki, P., Tiba, D.: Optimal Control of Nonlinear Parabolic Systems. Dekker, New York (1994) MATHGoogle Scholar
  36. 36.
    Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–368 (1993) MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Rösch, A.: Error estimates for linear-quadratic control problems with control constraints. Optim. Methods Softw. 21, 121–134 (2006) MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Showalter, R.E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. Mathematical Surveys and Monographs AMS. AMS, Providence (1997) MATHGoogle Scholar
  39. 39.
    Stadler, G.: Semismooth Newton and augmented Lagrangian methods for a simplified friction problem. SIAM J. Optim. 15, 39–62 (2004) MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Thomas, J.W.: Numerical Partial Differential Equations: Finite Difference Methods. Springer, Berlin (1995) MATHGoogle Scholar
  41. 41.
    Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Academic Press, London (2001) MATHGoogle Scholar
  42. 42.
    Ulbrich, M.: Semismooth Newton methods for operator equations in function spaces. SIAM J. Optim. 13, 805–842 (2002) MathSciNetCrossRefGoogle Scholar
  43. 43.
    Varga, S.R.: Matrix Iterative Analysis. Prentice Hall, New York (1962) Google Scholar
  44. 44.
    Zuazua, E.: Switching control. J. Eur. Math. Soc. (to appear) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institut für Mathematik und Wissenschaftliches RechnenKarl-Franzens-Universität GrazGrazAustria
  2. 2.Research Group on Optimization, Departamento de MatemáticaEscuela Politécnica NacionalQuitoEcuador
  3. 3.Dipartimento e Facoltà di Ingegneria, Palazzo Dell’Aquila Bosco LucarelliUniversità degli Studi del SannioBeneventoItalia

Personalised recommendations