Advertisement

Regularization for semilinear elliptic optimal control problems with pointwise state and control constraints

  • Klaus Krumbiegel
  • Ira Neitzel
  • Arnd Rösch
Article

Abstract

In this paper a class of semilinear elliptic optimal control problem with pointwise state and control constraints is studied. We show that sufficient second order optimality conditions for regularized problems with small regularization parameter can be obtained from a second order sufficient condition assumed for the unregularized problem. Moreover, error estimates with respect to the regularization parameter are derived.

Keywords

Optimal control Semilinear elliptic equation State constraints Regularization Virtual control Second order sufficient conditions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arada, N., Raymond, J.P.: Optimal control problems with mixed control-state constraints. SIAM J. Control Optim. 39, 1391–1407 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bergounioux, M., Ito, K., Kunisch, K.: Primal-dual strategy for constrained optimal control problems. SIAM J. Control Optim. 37, 1176–1194 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000) zbMATHGoogle Scholar
  4. 4.
    Casas, E.: Control of an elliptic problem with pointwise state constraints. SIAM J. Control Optim. 4, 1309–1322 (1986) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Casas, E.: Boundary control of semilinear elliptic equations with pointwise state constraints. SIAM J. Control Optim. 31, 993–1006 (1993) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Casas, E., de los Reyes, J.C., Tröltzsch, F.: Sufficient second-order optimality conditions for semilinear control problems with pointwise state constraints. SIAM J. Optim. 19(2), 616–643 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Casas, E., Tröltzsch, F.: Error estimates for the finite-element approximation of a semilinear elliptic control problem. Control Cybern. 31, 695–712 (2002) zbMATHGoogle Scholar
  8. 8.
    Casas, E., Tröltzsch, F.: Recent advances in the analysis of pointwise state-constrained elliptic optimal control problems. ESAIM: COCV 16(3), 581–600 (2010) zbMATHCrossRefGoogle Scholar
  9. 9.
    Cherednichenko, S., Krumbiegel, K., Rösch, A.: Error estimates for the Lavrentiev regularization of elliptic optimal control problems. Inverse Probl. 24(5), 055003 (2008) CrossRefGoogle Scholar
  10. 10.
    Cherednichenko, S., Rösch, A.: Error estimates for the regularization of optimal control problems with pointwise control and state constraints. ZAA 27(2), 195–212 (2008) zbMATHGoogle Scholar
  11. 11.
    Griesse, R., Metla, N., Rösch, A.: Convergence analysis of the SQP method for nonlinear mixed-constrained elliptic optimal control problems. ZAMM 88(10), 776–792 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985) zbMATHGoogle Scholar
  13. 13.
    Gröger, K.: A W 1,p-estimate for solutions to mixed boundary value problems for second order elliptic differential equations. Math. Ann. 283, 679–687 (1989) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Hager, W., Ianulescu, G.: Dual approximation in optimal control. SIAM J. Control Optim. 22, 423–466 (1984) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set method as a semi-smooth Newton method. SIAM J. Optim. 13, 865–888 (2003) zbMATHCrossRefGoogle Scholar
  16. 16.
    Hinze, M., Meyer, C.: Variational discretization of Lavrentiev-regularized state constrained elliptic optimal control problems. Comput. Optim. Appl. 46(3), 487–510 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Ito, K., Kunisch, K.: Augmented Lagrangian-SQP-methods for nonlinear optimal control problems of tracking type. SIAM J. Control Opt. 34(3), 874–891 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Ito, K., Kunisch, K.: Semi-smooth Newton methods for state-constrained optimal control problems. Syst. Control Lett. 50, 221–228 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Krumbiegel, K., Rösch, A.: A virtual control concept for state constrained optimal control problems. COAP 43(2), 213–233 (2009) zbMATHGoogle Scholar
  20. 20.
    Krumbiegel, K., Meyer, C., Rösch, A.: A priori error analysis for state constrained boundary control problems part I: control discretization (2009). Weierstrass Institute for Applied Analysis and Stochastics, WIAS Preprint 1393 Google Scholar
  21. 21.
    Krumbiegel, K., Rösch, A.: On the regularization error of state constrained Neumann control problems. Control Cybern. 37(2), 369–392 (2008) zbMATHGoogle Scholar
  22. 22.
    Kunisch, K., Rösch, A.: Primal-dual active set strategy for a general class of constrained optimal control problems. SIAM J. Optim. 13(2), 321–334 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Meyer, C., Rösch, A., Tröltzsch, F.: Optimal control of PDEs with regularized pointwise state constraints. Comput. Optim. Appl. 33(2–3), 209–228 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Meyer, C., Yousept, I.: Regularization of state-constrained elliptic optimal control problems with nonlocal radiation interface conditions. Comput. Optim. Appl. 44(2), 183–212 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Neitzel, I., Tröltzsch, F.: On convergence of regularization methods for nonlinear parabolic optimal control problems with control and state constraints. Control Cybern. 37(4), 1013–1043 (2008) zbMATHGoogle Scholar
  26. 26.
    Raymond, J.P., Tröltzsch, F.: Second order sufficient optimality conditions for nonlinear parabolic control problems with state constraints. Discrete Contin. Dyn. Syst. 6, 431–450 (2000) zbMATHCrossRefGoogle Scholar
  27. 27.
    Rösch, A., Tröltzsch, F.: On regularity of solutions and Lagrange multipliers of optimal control problems for semilinear equations with mixed pointwise control-state constraints. SIAM J. Control Optim. 46(3), 1098–1115 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Schiela, A.: Barrier methods for optimal control problems with state constraints. SIAM J. Optim. 20(2), 1002–1031 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Tröltzsch, F.: An SQP method for the optimal control of a nonlinear heat equation. Control Cybern. 23(1/2), 267–288 (1994) zbMATHGoogle Scholar
  30. 30.
    Tröltzsch, F.: Regular Lagrange multipliers for problems with pointwise mixed control-state constraints. SIAM J. Optim. 15(2), 616–634 (2005) zbMATHCrossRefGoogle Scholar
  31. 31.
    Tröltzsch, F.: Optimal Control of Partial Differential Equations: Theory, Methods and Applications. Graduate Studies in Mathematics, vol. 112. American Mathematical Society, Providence (2010) zbMATHGoogle Scholar
  32. 32.
    Zanger, D.Z.: The inhomogeneous Neumann problem in Lipschitz domains. Commun. Partial Differ. Equ. 25, 1771–1808 (2000) MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Weierstrass Institute for Applied Mathematics and Stochastics, Nonlinear Optimization and Inverse ProblemsBerlinGermany
  2. 2.Fakultät II–Mathematik und NaturwissenschaftenTechnische Universität BerlinBerlinGermany
  3. 3.Department of MathematicsUniversität Duisburg-EssenDuisburgGermany

Personalised recommendations