Advertisement

Computational Optimization and Applications

, Volume 51, Issue 2, pp 749–781 | Cite as

Solving VLSI design and DNA sequencing problems using bipartization of graphs

  • Pierre Fouilhoux
  • A. Ridha MahjoubEmail author
Article

Abstract

In this paper we consider the 2-layer constrained via minimization problem and the SNP haplotype assembly problem. The former problem arises in the design of integrated and printed circuit boards, and the latter comes up in the DNA sequencing process for diploid organisms. We show that, for any maximum junction degree, the problem can be reduced to the maximum bipartite induced subgraph problem. Moreover we show that the SNP haplotype assembly problem can also be reduced to the maximum bipartite induced subgraph problem for the so-called minimum error correction criterion. We give a partial characterization of the bipartite induced subgraph polytope. Using this, we devise a branch-and-cut algorithm and report some experimental results. This algorithm has been used to solve real and large instances.

Keywords

Electronics Genomics Bipartite induced subgraph problem Polyhedral approach Branch-and-cut algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barahona, F.: On the complexity of max-cut. Rapport de recherche no. 186, IMAG, Université Scientifique et Médicale de Grenoble (1980) Google Scholar
  2. 2.
    Barahona, F., Mahjoub, A.R.: Facets of the balanced acyclic induced subgraph polytope. Math. Program. 45, 21–34 (1989) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Barahona, F., Mahjoub, A.R.: Composition of graphs and polyhedra I: Balanced induced subgraphs and acyclic subgraphs. SIAM J. Discrete Math. 7, 344–358 (1994) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Barahona, F., Grötschel, M., Mahjoub, A.R.: Facets of the bipartite subgraph polytope. Math. Oper. Res. 10, 340–358 (1985) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Barahona, F., Grötschel, M., Jünger, M., Reinelt, G.: An application of combinatorial optimization to statistical physics and circuit layout design. Oper. Res. 36, 493–513 (1988) zbMATHCrossRefGoogle Scholar
  6. 6.
    Bonizzoni, P., Vedova, G.D., Dondi, R., Li, J.: The haplotyping problem: An overview of computational models and solutions. J. Comput. Sci. Technol. 18, 675–688 (2003) zbMATHCrossRefGoogle Scholar
  7. 7.
    Chang, C.C., Cong, J.: An efficient approach to multi-layer layer assignment with application to via minimization. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 18, 608–620 (1999) CrossRefGoogle Scholar
  8. 8.
    Cheng, E., Cunningham, W.: Wheel inequalities for stable set polytope. Math. Program. 77, 389–421 (1997) MathSciNetzbMATHGoogle Scholar
  9. 9.
    Chen, R., Kajitani, Y., Chan, S.: A graph theoretic via minimization algorithm for two layer printed circuit boards. IEEE Trans. Circuits Syst. 30, 284–299 (1983) zbMATHCrossRefGoogle Scholar
  10. 10.
    Choi, H., Nakajima, K., Rim, C.: Graph bipartization and via minimization. SIAM J. Discrete Math. 2, 38–47 (1989) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Fonlupt, J., Mahjoub, A.R., Uhry, J.: Compositions in the bipartite subgraph polytope. Discrete Math. 105, 73–91 (1992) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Fouilhoux, P.: Graphes k-partis et conception de circuit VLSI. Ph.D Thesis Ner D.U. 1555, EDSPIC 314, Université Blaise Pascal, Clermont-Ferrand, France (2004) Google Scholar
  13. 13.
    Fouilhoux, P., Mahjoub, A.R.: An exact model for multi-layer constrained via minimization. Preprint (2006) Google Scholar
  14. 14.
    Fouilhoux, P., Mahjoub, A.R.: Polyhedral results for the bipartite induced subgraph problem. Discrete Appl. Math. 154, 2128–2149 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Fouilhoux, P., Mahjoub, A.R.: Cellular inequalities for the induced bipartite subgraph polytope (in preparation) Google Scholar
  16. 16.
    Froleyks, B., Korte, B., Prömel, H.J.: Routing in VLSI-layout. Acta Math. Appl. Sin. 7, 53–66 (1991) zbMATHCrossRefGoogle Scholar
  17. 17.
    Grötschel, M., Pulleyblank, W.: Weakly bipartite graphs and the max-cut problem, operations research. Oper. Res. 1, 23–27 (1981) zbMATHGoogle Scholar
  18. 18.
    Grötschel, M., Lovasz, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Berlin (1985) Google Scholar
  19. 19.
    Guenin, B.: A characterization of weakly bipartite graphs. J. Comb. Theory B 83, 112–168 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Hashimoto, A., Stevens, J.: Wire routing by optimizing channel assignment with large apertures. In: Proc. 8th Design Automation Workshop, pp. 155–169 (1971) Google Scholar
  21. 21.
  22. 22.
    Kajitani, Y.: On via hole minimization of routings on a 2-layer board. In: Proc. IEEE ICCC, pp. 295–298 (1980) Google Scholar
  23. 23.
    Lancia, G., Bafna, V., Istrail, S., Lippert, R., Schwartz, R.: SNPs problems, complexity, and algorithms. In: ESA, pp. 182–193 (2001) Google Scholar
  24. 24.
    Lengauer, T., Lügering, M.: Integer program formulations of global routing and placement problems. Reihe Informatik Nr. 95, Univ. Gesamthochschule-Paderborn (1991) Google Scholar
  25. 25.
    Lippert, R., Schwartz, R., Lancia, G., Istrail, S.: Algorithmic strategies for the single nucleotide polymorphism haplotype assembly problem. Brief. Bioinform 3, 23–31 (2002) CrossRefGoogle Scholar
  26. 26.
    Möhring, R., Wagner, D., Wagner, F.: VLSI network design, a survey. TR No. 323, Univ. Berlin (1992) Google Scholar
  27. 27.
    Nemhauser, G., Sigismondi, G.: A strong cutting plane/branch-and-bound algorithm for node packing. J. Oper. Res. Soc. 43, 443–457 (1992) zbMATHGoogle Scholar
  28. 28.
    Panconesi, A., Sozio, M.: Fast hare: a fast heuristic for single individual SNP haplotype reconstruction. In: Proc. WABI 2004, pp. 266–277 (2004) Google Scholar
  29. 29.
    Pinter, R.: Optimal layer assignment for interconnect. In: Proc. International Symposium on Circuits on Systems, pp. 398–401 (1982) Google Scholar
  30. 30.
    Sanger, F., Coulson, A., Hong, G., Hill, D., Petersen, G.: Nucleotide sequence of bacteriophage lambda DNA. J. Mol. Biol. 162, 729–773 (1982) CrossRefGoogle Scholar
  31. 31.
    Schrijver, A.: Combinatorial Optimization—Polyhedra and Efficiency. Springer, Berlin (2003) zbMATHGoogle Scholar
  32. 32.
    Venter, J.C., Adams, M.D., Myers, E.W., et al.: The sequence of the human genome. Science 291, 1304–1351 (2001) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Laboratoire LIP6CNRS UMR 7626, Université Pierre et Marie CurieParisFrance
  2. 2.Université Paris-Dauphine, LAMSADE, CNRSParis CEDEX 16France

Personalised recommendations