Computational Optimization and Applications

, Volume 51, Issue 1, pp 323–344 | Cite as

Partitioning planar graphs: a fast combinatorial approach for max-cut

Article

Abstract

The max-cut problem asks for partitioning the nodes V of a graph G=(V,E) into two sets (one of which might be empty), such that the sum of weights of edges joining nodes in different partitions is maximum. Whereas for general instances the max-cut problem is NP-hard, it is polynomially solvable for certain classes of graphs. For planar graphs, there exist several polynomial-time methods determining maximum cuts for arbitrary choice of edge weights. Typically, the problem is solved by computing a minimum-weight perfect matching in some associated graph. The most efficient known algorithms are those of Shih et al. (IEEE Trans. Comput. 39(5):694–697, 1990) and that of Berman et al. (WADS, Lecture Notes in Computer Science, vol. 1663, pp. 25–36, Springer, Berlin, 1999). The running time of the former can be bounded by \(O(|V|^{\frac{3}{2}}\log|V|)\). The latter algorithm is more generally for determining T-joins in graphs. Although it has a slightly larger bound on the running time of \(O(|V|^{\frac{3}{2}}(\log|V|)^{\frac{3}{2}})\alpha(|V|)\), where α(|V|) is the inverse Ackermann function, it can solve large instances in practice.

In this work, we present a new and simple algorithm for determining maximum cuts for arbitrary weighted planar graphs. Its running time is bounded by \(O(|V|^{\frac{3}{2}}\log|V|)\), the same bound achieved by Shih et al. It can easily determine maximum cuts in huge random as well as real-world graphs with up to 106 nodes. We present experimental results for our method using two different matching implementations. We furthermore compare our approach with those of Shih et al. and Berman et al. It turns out that our algorithm is considerably faster in practice than Shih et al. Moreover, it yields a much smaller associated graph. Its expanded graph size is comparable to that of Berman et al. However, whereas the procedure of generating the expanded graph in Berman et al. is very involved (thus needs a sophisticated implementation), implementing our approach is an easy and straightforward task.

Keywords

Maximum cut Planar graph Perfect matching Kasteleyn city T-join 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    9th DIMACS: Implementation challenge—shortest paths. http://www.dis.uniroma1.it/~challenge9/download.shtml (2005)
  2. 2.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Prentice Hall, New York (1993). Theory, algorithms, and applications MATHGoogle Scholar
  3. 3.
    Aoshima, K., Iri, M.: Comments on Hadlock’s paper: “Finding a maximum cut of a planar graph in polynomial time”. SIAM J. Comput. 6(1), 86–87 (1977) CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Barahona, F.: On the computational complexity of Ising spin glass models. J. Phys. A: Math. Gen. 15(10), 3241–3253 (1982) CrossRefMathSciNetGoogle Scholar
  5. 5.
    Barahona, F.: The max-cut problem on graphs not contractible to K 5. Oper. Res. Lett. 2(3), 107–111 (1983) CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Barahona, F.: Planar multicommodity flows, max-cut, and the Chinese-Postman problem. In: Polyhedral Combinatorics, Morristown, NJ, 1989. DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 1, pp. 189–202. Amer. Math. Soc., Providence (1990) Google Scholar
  7. 7.
    Barahona, F., Maynard, R., Rammal, R., Uhry, J.P.: Morphology of ground states of two-dimensional frustration model. J. Phys. A: Math. Gen. 15(2), 673–699 (1982) CrossRefMathSciNetGoogle Scholar
  8. 8.
    Barahona, F., Grötschel, M., Jünger, M., Reinelt, G.: An application of combinatorial optimization to statistical physics and circuit layout design. Oper. Res. 36(3), 493–513 (1988) CrossRefMATHGoogle Scholar
  9. 9.
    Berman, P., Kahng, A.B., Vidhani, D., Zelikovsky, A.: The T-join problem in sparse graphs: Applications to phase assignment problem in VLSI mask layout. In: Dehne, F.K.H.A., Gupta, A., Sack, J.-R., Tamassia, R. (eds.) WADS. Lecture Notes in Computer Science, vol. 1663, pp. 25–36. Springer, Berlin (1999) Google Scholar
  10. 10.
    Bieche, L., Uhry, J.P., Maynard, R., Rammal, R.: On the ground states of the frustration model of a spin glass by a matching method of graph theory. J. Phys. A: Math. Gen. 13(8), 2553–2576 (1980) CrossRefMathSciNetGoogle Scholar
  11. 11.
    Boros, E., Hammer, P.L.: The max-cut problem and quadratic 0–1 optimization; polyhedral aspects, relaxations and bounds. Ann. Oper. Res. 33(1–4), 151–180 (1991). Topological network design (Copenhagen, 1989) CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Buchheim, C., Liers, F., Oswald, M.: A basic toolbox for constrained quadratic 0/1 optimization. In: McGeoch, C.C. (ed.) WEA. Lecture Notes in Computer Science, vol. 5038, pp. 249–262. Springer, Berlin (2008) Google Scholar
  13. 13.
    Cook, W., Rohe, A.: Computing minimum-weight perfect matchings. INFORMS J. Comput. 11, 138–148 (1999) CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    COPhy, Combin. Optim. Phys. http://cophy.informatik.uni-koeln.de/ (2007)
  15. 15.
    de Simone, C.: The cut polytope and the boolean quadric polytope. Discrete Math. 79, 71–75 (1989) CrossRefMathSciNetGoogle Scholar
  16. 16.
    Edmonds, J.: Maximum matching and a polyhedron with 0–1 vertices. J. Res. Natl. Bureau Stand. 69B, 125–130 (1965) MathSciNetGoogle Scholar
  17. 17.
    Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965) (English) CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Ford, L.R. Jr., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math. 8, 399–404 (1956) CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Gabow, H.N.: An efficient implementation of Edmonds’ algorithm for maximum matching on graphs. J. ACM 23(2), 221–234 (1976) CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Gabow, H.N.: Data structures for weighted matching and nearest common ancestors with linking. In: SODA ’90: Proceedings of the first annual ACM-SIAM Symposium on Discrete Algorithms, pp. 434–443. SIAM, Philadelphia (1990) Google Scholar
  21. 21.
    Grötschel, M., Jünger, M., Reinelt, G.: Via minimization with pin preassignments and layer preference. Z. Angew. Math. Mech. 69(11), 393–399 (1989) CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Hadlock, F.: Finding a maximum cut of a planar graph in polynomial time. SIAM J. Comput. 4(3), 221–225 (1975) CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Harary, F. (ed.): Graph Theory and Theoretical Physics. Academic Press, London (1967) MATHGoogle Scholar
  24. 24.
    Hartmann, A.K., Rieger, H.: Optimization Algorithms in Physics. Wiley-VCH, New York (2002) MATHGoogle Scholar
  25. 25.
    Hartmann, A.K., Young, A.P.: Lower critical dimension of Ising spin glasses. Phys. Rev. B 64(18), 180404 (1989) CrossRefGoogle Scholar
  26. 26.
    Kasteleyn, P.W.: Dimer statistics and phase transitions. J. Math. Phys. 4(2), 287–293 (1963) CrossRefMathSciNetGoogle Scholar
  27. 27.
    Knuth, D.E.: The Stanford GraphBase: A Platform for Combinatorial Computing. ACM, New York (1993) Google Scholar
  28. 28.
    Kolmogorov, V.: Blossom V: a new implementation of a minimum cost perfect matching algorithm. Math. Program. Comput. 1(1), 43–67 (2009) CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Kuo, Y.S., Chern, T.C., Shih, W.K.: Fast algorithm for optimal layer assignment. In: DAC ’88: Proceedings of the 25th ACM/IEEE Conference on Design Automation, Los Alamitos, CA, USA, pp. 554–559. IEEE Computer Society Press, New York (1988) Google Scholar
  30. 30.
    Lawler, E.L.: Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Winston, New York (1976) MATHGoogle Scholar
  31. 31.
    Liers, F., Pardella, G.: A simple max-cut algorithm for planar graphs. Tech. report, Combinatorial Optimization in Physics (COPhy), Sep. 2008, http://www.zaik.uni-koeln.de/~paper/preprints.html?show=zaik2008-579
  32. 32.
    Liers, F., Jünger, M., Reinelt, G., Rinaldi, G.: Computing exact ground states of hard Ising spin glass problems by Branch-and-Cut. In: Hartmann, A.K., Rieger, H. (eds.) New Optimization Algorithms in Physics, pp. 47–68. Wiley, New York (2004) Google Scholar
  33. 33.
    Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl. Math. 36(2), 177–189 (1979) CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM J. Comput. 9(3), 615–627 (1980) CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    McCormick, S.T., Rao, M.R., Rinaldi, G.: Easy and difficult objective functions for max-cut. Math. Program. Ser. B 94(2–3), 459–466 (2003). The Aussois 2000 Workshop in Combinatorial Optimization CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Mehlhorn, K., Näher, S.: LEDA: A Platform for Combinatorial and Geometric Computing. Cambridge University Press, Cambridge (1999) MATHGoogle Scholar
  37. 37.
    Mutzel, P.: Implementierung und Analyse eines Max-Cut Algorithmus für planare Graphen. Diploma thesis (1990) Google Scholar
  38. 38.
    OGDF: Open graph drawing framework, http://www.ogdf.net (2007)
  39. 39.
    Orlova, G.I., Dorfman, Ya.G.: Finding the maximum cut in a graph. Eng. Cybern. 10, 502–506 (1972) MATHMathSciNetGoogle Scholar
  40. 40.
    Palmer, R.G., Adler, J.: Ground states for large samples of two-dimensional Ising spin glasses. Int. J. Mod. Phys. C 10, 667–675 (1999) CrossRefGoogle Scholar
  41. 41.
    Pardella, G., Liers, F.: Exact ground states of large two-dimensional planar Ising spin glasses. Phys. Rev. E: Stat. Nonlinear Soft. Matter. Phys. 78(5), 056705 (2008) CrossRefMathSciNetGoogle Scholar
  42. 42.
    Reinelt, G.: TSPLIB—a traveling salesman problem library. ORSA J. Comput. 3, 376–384 (1991) MATHGoogle Scholar
  43. 43.
    Schraudolph, N., Kamenetsky, D.: Efficient exact inference in planar Ising models. Tech. report, Australian National University and NICTA, Oct. 2008, http://arxiv.org/abs/0810.4401
  44. 44.
  45. 45.
    Shih, W.K., Wu, S., Kuo, Y.S.: Unifying maximum cut and minimum cut of a planar graph. IEEE Trans. Comput. 39(5), 694–697 (1990) CrossRefMathSciNetGoogle Scholar
  46. 46.
    Stoer, M., Wagner, F.: A simple min-cut algorithm. J. ACM 44(4), 585–591 (1997) CrossRefMATHMathSciNetGoogle Scholar
  47. 47.
    Thomas, C.K., Middleton, A.A.: Matching Kasteleyn cities for spin glass ground states. Phys. Rev. B 76(22), 220406(R) (2007) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institut für InformatikUniversität zu KölnCologneGermany

Personalised recommendations