Computational Optimization and Applications

, Volume 51, Issue 1, pp 411–435 | Cite as

A GRASP based on DE to solve single machine scheduling problem with SDST

  • Hanen Akrout
  • Bassem Jarboui
  • Patrick Siarry
  • Abdelwaheb Rebaï
Article

Abstract

When handling combinatorial optimization problems, we try to get the optimal arrangement of discrete entities so that the requirements and the constraints are satisfied. These problems become more and more important in various industrial and academic fields. So, over the past years, several techniques have been proposed to solve them. In this paper, we are interested in the single machine scheduling problem with Sequence-Dependent Setup Times, which can be solved through different approaches. We present a hybrid algorithm which combines Greedy Randomized Adaptive Search Procedure and Differential Evolution for tackling this problem. Our algorithm is tested on benchmark instances from the literature. The computational experiments prove the efficiency of this algorithm.

Keywords

Scheduling single machine Greedy randomized adaptive search procedure Differential evolution Sequence-dependent setup times Total tardiness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bigras, L.P., Gamache, M., Savard, G.: The time-dependent traveling salesman problem and single machine scheduling problems with sequence dependent setup times. Discrete Optim. 5, 685–699 (2008) MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Choobineh, F.F., Mohebbi, E., Khoo, H.: A multi-objective tabu search for a single-machine scheduling problem with sequence-dependent setup times. Eur. J. Oper. Res. 175, 318–337 (2006) MATHCrossRefGoogle Scholar
  3. 3.
    Das, S.R., Gupta, J.N.D., Khumawala, B.M.: A savings index heuristic algorithm for flowshop scheduling with sequence dependent set-up times. J. Oper. Res. Soc. 46, 1365–1373 (1995) MATHGoogle Scholar
  4. 4.
    Du, J., Leung, J.Y.T.: Minimizing total tardiness on one machine is NP-hard. Math. Oper. Res. 15, 483–495 (1990) MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. J. Glob. Optim. 6, 109–133 (1995) MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Feo, T.A., Venkatraman, K., Bard, J.F.: A GRASP for a difficult single machine scheduling problem. Comput. Oper. Res. 18, 635–643 (1991) MATHCrossRefGoogle Scholar
  7. 7.
    Feo, T.A., Sarathy, K., McGahan, J.: A GRASP for single machine scheduling with sequence dependent setup costs and linear delay penalties. Comput. Oper. Res. 23, 881–895 (1996) MATHCrossRefGoogle Scholar
  8. 8.
    Festa, P., Pardalos, P.M., Resende, M.G.C., Ribeiro, C.C.: GRASP and VNS for Max-Cut. In: Extended Abstracts of the Fourth Metaheuristics International Conference, pp. 371–376, Porto, July (2001) Google Scholar
  9. 9.
    França, P.M., Gendreau, M., Laporte, G., Müller, F.M.: A tabu search heuristic for the multiprocessor scheduling problem with sequence dependent setup times. Int. J. Prod. Econ. 43, 79–89 (1996) CrossRefGoogle Scholar
  10. 10.
    França, P.M., Mendes, A., Moscato, P.: A memetic algorithm for the total tardiness single machine scheduling problem. Eur. J. Oper. Res. 132, 224–242 (2001) MATHCrossRefGoogle Scholar
  11. 11.
    Gagné, C., Price, W.L., Gravel, M.: Comparing an ACO algorithm with other heuristics for the single machine scheduling problem with sequence-dependent setup times. J. Oper. Res. Soc. 53, 895–906 (2002) MATHCrossRefGoogle Scholar
  12. 12.
    Gagné, C., Gravel, M., Price, W.L.: Using metaheuristic compromise programming for the solution of multiple-objective scheduling problems. J. Oper. Res. Soc. 56, 687–698 (2005) MATHCrossRefGoogle Scholar
  13. 13.
    Gravel, M., Price, W.L., Gagné, C.: Scheduling jobs in an alcan aluminium foundry using a genetic algorithm. Int. J. Prod. Res. 38, 3031–3041 (2000) CrossRefGoogle Scholar
  14. 14.
    Gupta, S.R., Smith, J.S.: Algorithms for single machine total tardiness scheduling with sequence dependent setups. Eur. J. Oper. Res. 175, 722–739 (2006) MATHCrossRefGoogle Scholar
  15. 15.
    Hansen, P., Mladenović, N.: Variable neighborhood search: principles and applications. Eur. J. Oper. Res. 130, 449–467 (2001) MATHCrossRefGoogle Scholar
  16. 16.
    Liao, C.J., Yu, W.C.: Sequencing heuristics for dependent setups in a continuous process industry. Omega—Int. J. Manag. Sci. 24, 649–659 (1996) CrossRefGoogle Scholar
  17. 17.
    Liao, C.J., Chen, W.J.: Scheduling under machine breakdown in a continuous process industry. Comput. Oper. Res. 31, 415–428 (2004) MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Liao, C.J., Juan, H.C.: An ant colony optimization for ACO single-machine tardiness scheduling with sequence-dependent setups. Comput. Oper. Res. 34, 1899–1909 (2007) MATHCrossRefGoogle Scholar
  19. 19.
    Luo, X., Chu, F.: A branch and bound algorithm of the single machine schedule with sequence dependent setup times for minimizing total tardiness. Appl. Math. Comput. 183, 575–588 (2006) MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Luo, X., Chu, C.: A branch-and-bound algorithm of the single machine schedule with sequence-dependent setup times for minimizing maximum tardiness. Eur. J. Oper. Res. 180, 68–81 (2007) MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24, 1097–1100 (1997) MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Ozgur, C.O., Brown, J.R.: A two-stage traveling salesman procedure for the single machine sequence-dependent scheduling problem. Omega—Int. J. Manag. Sci. 23, 205–219 (1995) CrossRefGoogle Scholar
  23. 23.
    Potts, C.N., Van Wassenhove, L.N.: A branch and bound algorithm for the total weighted tardiness problem. Oper. Res. 33, 363–377 (1985) MATHCrossRefGoogle Scholar
  24. 24.
    Ragatz, G.L.: A branch-and-bound method for minimum tardiness sequencing on a single processor with sequence dependent setup times. In: Proceedings of the twenty-fourth annual meeting of the Decision Sciences Institute, pp. 1375–1377 (1993) Google Scholar
  25. 25.
    Rubin, P.A., Ragatz, G.L.: Scheduling in a sequence dependent setup environment with genetic search. Comput. Oper. Res. 22, 85–99 (1995) MATHCrossRefGoogle Scholar
  26. 26.
    Selen, W.J., Heuts, R.M.J.: Operational production planning in a chemical manufacturing environment. Eur. J. Oper. Res. 45, 38–46 (1990) CrossRefGoogle Scholar
  27. 27.
    Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997) MATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Sun, X., Noble, J.S., Klein, C.M.: Single-machine scheduling with sequence dependent setup to minimize total weighted squared tardiness. IIE Trans. 31, 113–124 (1999) Google Scholar
  29. 29.
    Tan, K.C., Narasimhan, R.: Minimizing tardiness on a single processor with sequence-dependent setup times: a simulated annealing approach. Omega—Int. J. Manag. Sci. 25, 619–634 (1997) CrossRefGoogle Scholar
  30. 30.
    Tan, K.C., Narasimhan, R., Rubin, P.A., Ragatz, G.L.: A comparison of four methods for minimizing total tardiness on a single processor with sequence dependent setup times. Omega—Int. J. Manag. Sci. 28, 313–326 (2000) CrossRefGoogle Scholar
  31. 31.
    Ying, K.C., Lin, S.W., Huang, C.Y.: Sequencing single-machine tardiness problems with sequence dependent setup times using an iterated greedy heuristic. Expert Syst. Appl. 36, 7087–7092 (2009) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Hanen Akrout
    • 1
  • Bassem Jarboui
    • 1
    • 2
  • Patrick Siarry
    • 3
  • Abdelwaheb Rebaï
    • 1
  1. 1.GIADFSEGSSfaxTunisie
  2. 2.Institut Supérieur de Commerce et de Comptabilité de BizerteZarzounaTunisie
  3. 3.LiSSiUniversité de Paris 12CréteilFrance

Personalised recommendations