Advertisement

Computational Optimization and Applications

, Volume 50, Issue 1, pp 147–162 | Cite as

Shape optimization of an airfoil in the presence of compressible and viscous flows

  • B. FarhadiniaEmail author
Article
  • 111 Downloads

Abstract

The objective of this article is to present a step-by-step problem-solving procedure of shape optimization. The procedure is carried out to design an airfoil in the presence of compressible and viscous flows using a control theory approach based on measure theory. An optimal shape design (OSD) problem governed by full Navier-Stokes equations is given. Then, a weak variational form is derived from the linearized governing equations. During the procedure, because the measure theory (MT) approach is implemented using fixed geometry versus moving geometry, a proper bijective transformation is introduced. Finally, an approximating linear programming (LP) problem of the original shape optimization problem is obtained by means of MT approach that is not iterative and does not need any initial guess to proceed. Illustrative examples are provided to demonstrate efficiency of the proposed procedure.

Optimal shape design problem Full Navier-Stokes equations Measure theory Linear programming problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Calgaro, C., Debussche, A., Laminie, J.: On a multilevel approach for the two dimensional Navier-Stokes equations with finite elements. Int. J. Numer. Methods Fluids 27, 241–258 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Farhadinia, B., Farahi, M.H.: Optimal shape design of an almost straight nozzle. Int. J. Appl. Math. 17(3), 319–333 (2005) MathSciNetzbMATHGoogle Scholar
  3. 3.
    Farhadinia, B., Farahi, M.H.: On the existence of the solution of an optimal shape design problem governed by full Navier-Stokes equations. Int. J. Contemp. Math. Sci. 2(15), 701–711 (2007) MathSciNetzbMATHGoogle Scholar
  4. 4.
    Farhadinia, B., Farahi, M.H., Esfahani, J.A.: Shape optimization of a nozzle with specified flow field including viscosity effect. Acta Appl. Math. 104, 243–256 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Lv, X., Zhao, Y., Hudng, X.Y., Xia, G.H., Wang, Z.J.: An efficient parallel unstructured-multigrid preconditioned implicit method for simulating 3D unsteady compressible flow with moving objects. J. Comput. Phys. 215(2), 661–690 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Kweon, J.R., Kellogg, R.B.: Compressible Navier-Stokes equations in a bounded domain with inflow boundary condition. SIAM J. Math. Anal. 28(1), 94–108 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Kweon, J.R., Kim, P., Song, M.: Weak singular solutions to compressible Navier-Stokes system in a bounded domain with inflow boundary. http://com2mac.postech.ac.kr/papers (2004)
  8. 8.
    Mehne, H.H., Farahi, M.H., Esfahani, J.A.: On an optimal shape design problem to control a thermoelastic deformation under a prescribed thermal treatment. Appl. Math. Model. 31, 663–675 (2007) zbMATHCrossRefGoogle Scholar
  9. 9.
    Mohammadi, B.: Applied Shape Optimization for Fluids. Clarendon Press, Oxford (2001) zbMATHGoogle Scholar
  10. 10.
    Pierce, N.A., Giles, M.B.: Adjoint recovery of superconvergent functionals form PDE approximations. SIAM Rev. 42(2), 247–264 (2000) MathSciNetCrossRefGoogle Scholar
  11. 11.
    Pileckas, K., Zajaczkowski, W.M.: On the free boundary problem for stationary compressible Navier-Stokes equations. Commun. Math. Phys. 129, 169–204 (1990) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Plotnikov, P.I., Sokolowski, J.: Domain dependence of solutions to compressible Navier-Stokes equations. SIAM J. Control Optim. 45(4), 1147–1539 (2006) MathSciNetCrossRefGoogle Scholar
  13. 13.
    Plotnikov, P.I., Sokolowski, J.: Stationary boundary value problems for compressible Navier-Stokes equations. In: Chipot, M. (ed.) Handbook of Differential Equations, vol. 6, pp. 313–410. Elsevier, Amsterdam (2008) Google Scholar
  14. 14.
    Plotnikov, P.I., Ruban, E.V., Sokolowski, J.: Inhomogeneous boundary value problems for compressible Navier-Stokes equations: well-posedness and sensitivity analysis. SIAM J. Math. Anal. 40(3), 1152–1200 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Rubio, J.E.: Control and Optimization: The Linear Treatment of Nonlinear Problems. Manchester University Press/Wiley, Manchester/New York and London (1986). zbMATHGoogle Scholar
  16. 16.
    Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1987) zbMATHGoogle Scholar
  17. 17.
    Saurel, R., Massoni, J., Renaud, F.: A Lagrangian numerical method for compressible multiphase flows. Int. J. Numer. Methods Fluids 54, 1425–1450 (2007) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Mohaghegh ArdabiliArdabilIran

Personalised recommendations