Advertisement

Computational Optimization and Applications

, Volume 49, Issue 2, pp 213–239 | Cite as

Exact approaches for integrated aircraft fleeting and routing at TunisAir

  • Mohamed HaouariEmail author
  • Hanif D. Sherali
  • Farah Zeghal Mansour
  • Najla Aissaoui
Article

Abstract

We describe models and exact solutions approaches for an integrated aircraft fleeting and routing problem arising at TunisAir. Given a schedule of flights to be flown, the problem consists of determining a minimum cost route assignment for each aircraft so as to cover each flight by exactly one aircraft while satisfying maintenance activity constraints. We investigate two tailored approaches for this problem: Benders decomposition and branch-and-price. Computational experiments conducted on real-data provide evidence that the branch-and-price approach outperforms the Benders decomposition approach and delivers optimal solutions within moderate CPU times. On the other hand, the Benders algorithm yields very quickly high quality near-optimal solutions.

Keywords

OR in airlines Airline fleet assignment Aircraft routing Benders decomposition Branch-and-bound Column generation Branch-and-price 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Augustson, J.G., Minker, J.: An analysis of some graph theoretical cluster techniques. J. ACM 17, 571–588 (1970) zbMATHCrossRefGoogle Scholar
  2. 2.
    Barnhart, C., Shenoi, R.G.: An approximate model and solution approach for the long-haul crew pairing problem. Transp. Sci. 32, 221–231 (1998) zbMATHCrossRefGoogle Scholar
  3. 3.
    Barnhart, C., Boland, N.L., Clarke, L.W., Johnson, E.L., Nemhauser, G.L., Shenoi, R.G.: Flight string models for aircraft fleeting and routing. Transp. Sci. 32, 208–220 (1998) zbMATHCrossRefGoogle Scholar
  4. 4.
    Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P.: Branch and price: Column generation for solving huge integer programs. Oper. Res. 46, 316–329 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Barnhart, C., Kniker, T., Lohatepanont, M.: Itinerary-based airline fleet assignment. Transp. Sci. 36, 199–217 (2002) zbMATHCrossRefGoogle Scholar
  6. 6.
    Barnhart, C., Belobaba, P., Odoni, A.R.: Applications of operations research in the air transport industry. Transp. Sci. 37, 368–391 (2003) CrossRefGoogle Scholar
  7. 7.
    Bélanger, N., Desaulniers, G., Soumis, F., Desrosiers, J.: Periodic airline fleet assignment with time windows, spacing constraints, and time dependent revenues. Eur. J. Oper. Res. 175, 1757–1766 (2006) CrossRefGoogle Scholar
  8. 8.
    Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems. Numer. Math. 4, 238–252 (1962) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Bron, C., Kerbosch, J.: Finding all cliques of an undirected graph. Commun. ACM 16, 575–577 (1973) zbMATHCrossRefGoogle Scholar
  10. 10.
    Cohn, A.M., Barnhart, C.: Improving crew scheduling by incorporating key maintenance routing decisions. Oper. Res. 51, 387–393 (2003) MathSciNetzbMATHGoogle Scholar
  11. 11.
    Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Schrijver, A.: Combinatorial Optimization. Wiley, New York (1998) zbMATHGoogle Scholar
  12. 12.
    Cordeau, J.F., Stojkovic, G., Soumis, F., Desrosiers, J.: Benders decomposition for simultaneous aircraft routing and crew scheduling. Transp. Sci. 35, 375–388 (2001) zbMATHCrossRefGoogle Scholar
  13. 13.
    Desaulniers, G., Desrosiers, J., Dumas, Y., Solomon, M., Soumis, F.: Daily aircraft routing and scheduling. Manag. Sci. 43, 841–855 (1997) zbMATHCrossRefGoogle Scholar
  14. 14.
    Desrochers, M.: An algorithm for the shortest path problem with resource constraints. Technical Report, GERAD (1988) Google Scholar
  15. 15.
    Desrosiers, J., Dumas, Y., Solomon, M., Soumis, F.: Time constrained routing and scheduling. In: Handbooks in Operations Research and Management Science, vol. 8, Network Routing, pp. 35–139. North-Holland, Amsterdam (1995) Google Scholar
  16. 16.
    Dreyfus, S.E.: An appraisal of some shortest path algorithms. Oper. Res. 17, 395–412 (1968) CrossRefGoogle Scholar
  17. 17.
    Elhallaoui, I., Villeneuve, D., Desaulniers, G.: Dynamic aggregation of set-partitioning constraints in column generation. Oper. Res. 53, 632–645 (2005) zbMATHCrossRefGoogle Scholar
  18. 18.
    Gamache, M., Soumis, F., Marquis, G., Desrosiers, J.: A column generation approach for large scale aircrew rostering problems. Les Cahiers du GERAD, G-94-20, Ecole des Hautes Etudes Commerciales, Montréal, Canada (1994) Google Scholar
  19. 19.
    Gamache, M., Soumis, F., Villeneuve, D., Desrosiers, J., Gélinas, E.: The preferential bidding system at Air Canada. Transp. Sci. 32, 246–255 (1998) zbMATHCrossRefGoogle Scholar
  20. 20.
    Gélinas, S., Desrochers, M., Desrosiers, J., Solomon, M.M.: A new branching strategy for time constrained routing problems with application to backhauling. Ann. Oper. Res. 61, 91–109 (1995) zbMATHCrossRefGoogle Scholar
  21. 21.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980) zbMATHGoogle Scholar
  22. 22.
    Gopalan, R., Talluri, K.T.: The aircraft maintenance routing problem. Oper. Res. 46, 260–271 (1998) zbMATHCrossRefGoogle Scholar
  23. 23.
    Hane, C.A., Barnhart, C., Johnson, E.L., Marsten, R.E., Nemhauser, G.L., Sigismondi, G.: The fleet assignment problem: Solving a large-scale integer program. Math. Program. 70, 211–232 (1995) MathSciNetzbMATHGoogle Scholar
  24. 24.
    Hansen, P., Jaumard, B., Poggi De Aragao, M.: Un algorithme primal de programmation linéaire généralisée pour les programmes mixtes. C. R. Acad. Sci. Paris 313, 557–560 (1991) MathSciNetzbMATHGoogle Scholar
  25. 25.
    Haouari, M., Dejax, P.: Plus court chemin avec dépendance horaire, algorithmes et applications. RAIRO-Oper. Res. 31, 117–132 (1997) MathSciNetzbMATHGoogle Scholar
  26. 26.
    Haouari, M., Aissaoui, N., Zeghal, F.M.: Network flow based approaches for integrated aircraft fleeting and routing. Eur. J. Oper. Res. 193, 591–599 (2009) zbMATHCrossRefGoogle Scholar
  27. 27.
    Ioachim, I., Desrosiers, J., Soumis, F., Bélanger, N.: Fleet assignment and routing with schedule synchronization constraints. Eur. J. Oper. Res. 119, 75–90 (1999) zbMATHCrossRefGoogle Scholar
  28. 28.
    Jacobs, T., Johnson, E., Smith, B.: O&D FAM: Incorporating passenger flows into the fleeting process. In: Darrow, R. (ed.) Thirty-Ninth Annual AGIFORS Symposium, New Orleans (1999) Google Scholar
  29. 29.
    Lavoie, S., Minoux, M., Odier, E.: A new approach for crew-pairing problems by column generation and application to air transport. Eur. J. Oper. Res. 35, 45–58 (1988) zbMATHCrossRefGoogle Scholar
  30. 30.
    Lettovsky, L., Johnson, E.L., Smith, B.: Schedule generation model. In: Darrow, R. (ed.) Thirty-Ninth Annual AGIFORS Symposium, New Orleans (1999) Google Scholar
  31. 31.
    Lettovsky, L., Johnson, E.L., Nemhauser, G.L.: Airline crew recovery. Transp. Sci. 34, 337–348 (2000) zbMATHCrossRefGoogle Scholar
  32. 32.
    Li, D., Huang, H.C., Morton, A., Chew, E.P.: Simultaneous fleet assignment and cargo routing using benders decomposition. OR Spektr. 28, 319–335 (2006) zbMATHCrossRefGoogle Scholar
  33. 33.
    Maculan, N., Michelon, P., Plateau, G.: Column-generation in linear programming with bounding variable constraints and its application in integer programming. Working Paper ES-268/92, Federal University of Rio de Janeiro, Brazil (1992) Google Scholar
  34. 34.
    Magnanti, T.L., Wong, R.T.: Accelerating Benders decomposition: Algorithmic enhancement and model selection criteria. Oper. Res. 29, 464–484 (1981) MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Mercier, A., Soumis, F.: An integrated aircraft routing, crew scheduling and flight retiming model. Comput. Oper. Res. 34, 2251–2265 (2007) zbMATHCrossRefGoogle Scholar
  36. 36.
    Mercier, A., Cordeau, J.F., Soumis, F.: A computational study of Benders decomposition for the integrated aircraft routing and crew scheduling problem. Comput. Oper. Res. 32, 1451–1476 (2005) MathSciNetCrossRefGoogle Scholar
  37. 37.
    Minoux, M.: Column generation techniques in combinatorial optimization, a new application to crew-pairing problems. In: Proceedings XXIVth AGIFORS Symposium, Strasbourg, France, Sept. 1984 Google Scholar
  38. 38.
    Mulligan, G.D., Corneil, D.G.: Corrections to Bierstone’s algorithm for generating cliques. J. ACM 19, 244–247 (1972) zbMATHCrossRefGoogle Scholar
  39. 39.
    Papadakos, N.: Integrated airline scheduling. Comput. Oper. Res. 36, 176–195 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Rei, W., Cordeau, J.-F., Gendreau, M., Soriano, P.: Accelerating Benders decomposition by local branching. INFORMS J. Comput. 19, 534–541 (2007) CrossRefGoogle Scholar
  41. 41.
    Ribeiro, C.C., Minoux, M., Penna, M.C.: An optimal column-generation-with-ranking algorithm for very large scale set partitioning problems in traffic assignment. Eur. J. Oper. Res. 41, 232–239 (1989) MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Ryan, D.M., Foster, B.A.: An integer programming approach to scheduling. In: Wren, A. (ed.) Computer Scheduling of Public Transport Urban Passenger Vehicle and Crew Scheduling, pp. 269–280. North-Holland, Amsterdam (1981) Google Scholar
  43. 43.
    Sandhu, R., Klabjan, D.: Integrated airline fleeting and crew-pairing decisions. Oper. Res. 55, 439–456 (2007) zbMATHCrossRefGoogle Scholar
  44. 44.
    Sarac, A., Batta, R., Rump, C.M.: A branch and price approval for operational aircraft maintenance routing. Eur. J. Oper. Res. 175, 1850–1869 (2006) zbMATHCrossRefGoogle Scholar
  45. 45.
    Sherali, H.D., Bish, E.K., Zhu, X.: Airline fleet assignment concepts, models, and algorithms. Eur. J. Oper. Res. 172, 1–30 (2006) zbMATHCrossRefGoogle Scholar
  46. 46.
    Sherali, H., Bae, K.-H., Haouari, M.: Integrated airline schedule design and fleet assignment: Polyhedral analysis and Benders decomposition approach. INFORMS J. Comput. (2009, in press) Google Scholar
  47. 47.
    Stojkovic, M., Soumis, F., Desrosiers, J.: The operational airline crew scheduling problem. Transp. Sci. 32, 232–245 (1998) zbMATHCrossRefGoogle Scholar
  48. 48.
    Vance, P.H., Atamurk, A., Barnhart, C., Gelman, E., Johnson, E.L., Krishna, A., Mahidhara, D., Nemhauser, G.L., Rebello, R.: A heuristic branch-and-price approach for the airline crew pairing problem. Technical Report LEC-97-06, Department of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA (1997) Google Scholar
  49. 49.
    Vanderbeck, F., Wolsey, L.A.: An exact algorithm for IP column generation. Oper. Res. Lett. 19, 151–159 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Wentges, P.: Accelerating Benders’ decomposition for the capacitated facility location problem. Math. Methods Oper. Res. 44, 267–290 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Yan, S., Chang, J.C.: Airline cockpit crew scheduling. Eur. J. Oper. Res. 136, 501–511 (2002) zbMATHCrossRefGoogle Scholar
  52. 52.
    Zeghal, F.M.: Résolution de programmes linéaires en nombres entiers de grandes tailles et application à un problème d’affectation en transport aérien. Ph.D. Dissertation, Université Paris 6, France (2002) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Mohamed Haouari
    • 1
    • 2
    Email author
  • Hanif D. Sherali
    • 4
  • Farah Zeghal Mansour
    • 3
  • Najla Aissaoui
    • 3
  1. 1.Department of Industrial EngineeringOzyegin UniversityIstanbulTurkey
  2. 2.Princess Fatimah Alnijris’ Research Chair for AMT, College of EngineeringKing Saud UniversityRiyadhSaudi Arabia
  3. 3.Combinatorial Optimization Research Group—ROIEcole Polytechnique de TunisieLa MarsaTunisia
  4. 4.Grado Department of Industrial and Systems EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations