Computational Optimization and Applications

, Volume 48, Issue 3, pp 675–695 | Cite as

Covering a polygonal region by rectangles

  • Y. G. Stoyan
  • T. Romanova
  • G. Scheithauer
  • A. Krivulya
Article

Abstract

The problem of covering a compact polygonal region, called target region, with a finite family of rectangles is considered. Tools for mathematical modeling of the problem are provided. Especially, a function, called Γ-function, is introduced which indicates whether the rectangles with respect to their configuration form a cover of the target region or not. The construction of the Γ-function is similar to that of Φ-functions which have been proved to be an efficient tool for packing problems. A mathematical model of the covering problem based on the Γ-function is proposed as well as a solution strategy. The approach is illustrated by an example and some computational results are presented.

Keywords

Mathematical modeling Optimization Covering problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bennell, J., Scheithauer, G., Stoyan, Y., Romanova, T.: Tools of mathematical modeling of arbitrary object packing problems. Ann. Oper. Res. (2008). ISSN 0254-5330 (Print) 1572-9338 (Online) Google Scholar
  2. 2.
    Daniels, K., Inkulu, R.: An incremental algorithm for translational polygon covering. Technical Report, 2001-001, University of Massachusetts at Lowell Computer Science Google Scholar
  3. 3.
    Dyckhoff, H., Scheithauer, G., Terno, J.: Cutting and packing. In: Dell’Amico, M., Maffioli, F. (eds.) Annotated Bibliographies in Combinatorial Optimization, pp. 393–412. Wiley, New York (1997) Google Scholar
  4. 4.
    Fowler, R., Paterson, M., Tanimoto, L.: Optimal packing and covering in the plane are NP-complete. Inf. Process. Lett. 12(3), 133–137 (1981) CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Stoyan, Y.G.: Covering a polygonal region by a collection of various size rectangles. Mech. Eng. Probl. 10(2), 67–82 (2007) Google Scholar
  6. 6.
    Stoyan, Y.G., Patsuk, V.: Covering a convex polygon with the given number of equal circles of minimal radius. Comput. Optim. Appl. (2008). Online Google Scholar
  7. 7.
    Stoyan, Y.G., Terno, J., Schithauer, G., Gil, N., Romanova, T.: Φ-function for 2D primary objects. Stud. Inform. (Paris Univ.) 2(1), 1–32 (2002) Google Scholar
  8. 8.
    Stoyan, Y.G., Scheithauer, G., Gil, N., Romanova, T.: Φ-function for complex 2D objects. 4OR (Q. J. Belg. Fr. Italian Oper. Res. Soc.) 2(1), 69–84 (2004) MATHMathSciNetGoogle Scholar
  9. 9.
    Stoyan, Y.G., Gil, N., Scheithauer, G., Pankratov, A., Magdalina, I.: Packing of convex polytopes into a parallelepiped. Optimization 54(2), 215–236 (2005) CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Y. G. Stoyan
    • 1
  • T. Romanova
    • 1
  • G. Scheithauer
    • 2
  • A. Krivulya
    • 1
  1. 1.Academy of Science of UkraineKharkovUkraine
  2. 2.Department of MathematicsTechnische Universität DresdenDresdenGermany

Personalised recommendations