Computational Optimization and Applications

, Volume 48, Issue 1, pp 91–108 | Cite as

How much do we “pay” for using default parameters?

  • Mustafa Baz
  • Brady Hunsaker
  • Oleg ProkopyevEmail author


This paper explores the potential benefit of using tuned parameter settings for integer programming instances. Three metrics are considered for selecting parameters: Time-to-Optimality, Proven-Gap and Best-Integer-Solution. Good parameter settings for each metric are found using the open-source software tool Selection Tool for Optimization Parameters. Computational tests are presented using CPLEX solver (version 9.0) on MIPLIB test instances, showing substantial improvements over the default parameter setting. Although the benefit of a tuned parameter setting on an individual instance is outweighed by the cost of identifying the tuned setting, these results indicate that substantial benefit may be achieved in cases where the cost of tuning parameter settings is justified.


Parameter tuning Mixed integer programming CPLEX MIPLIB 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Achard, P., De Schutter, E.: Complex parameter landscape for a complex neuron model. PLoS Comput. Biol. 2(7), 794–804 (2006) CrossRefGoogle Scholar
  2. 2.
    Achterberg, T., Koch, T., Martin, A.: MIPLIB 2003. Oper. Res. Lett. 34, 1–12 (2006) CrossRefMathSciNetGoogle Scholar
  3. 3.
    Audet, C., Orban, D.: Finding optimal algorithmic parameters using derivative-free optimization. SIAM J. Optim. 17(3), 642–664 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Baz, M., Hunsaker, B., Brooks, P., Gosavi, A.: Automated tuning of optimization software parameters. Technical Report 2007-7, University of Pittsburgh, Department of Industrial Engineering. Submitted for publication, available online at (2007)
  5. 5.
    Bixby, R.E., Ceria, S., McZeal, C.M., Savelsbergh, M.W.P.: An updated mixed integer programming library: MIPLIB 3.0. Optima 58, 12–15 (1998) Google Scholar
  6. 6.
    CBC, COIN-OR Branch-and-Cut MIP solver.
  7. 7.
    GLPK (GNU Linear Programming Kit).
  8. 8.
    Haas, J., Peysakhov, M., Mancoridis, S.: GA-based parameter tuning for multi-agent systems. In: Beyer, H.-G., O’Reilly, U.-M., Arnold, D.V., Banzhaf, W., Blum, C., Bonabeau, E.W., Cantu-Paz, E., Dasgupta, D., Deb, K., Foster, J.A., de Jong, E.D., Lipson, H., Llora, X., Mancoridis, S., Pelikan, M., Raidl, G.R., Soule, T., Tyrrell, A.M., Watson, J.-P., Zitzler, E. (eds.) GECCO 2005: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation. Washington, DC, 25–29 June 2005, vol. 1. pp. 1085–1086. ACM, New York (2005) CrossRefGoogle Scholar
  9. 9.
  10. 10.
  11. 11.
    Kohavi, R., John, G.: Automatic parameter selection by minimizing estimated error. In: Prieditis, A., Russell, S. (eds.) Machine Learning: Proceedings of the Twelfth International Conference, pp. 304–312. Morgan Kaufmann, San Mateo (1995) Google Scholar
  12. 12.
    Selection Tool for Optimization Parameters (STOP).
  13. 13.
    Tavares, H, Tipi, G., Vazacopoulos, A., Laundy, R., Perregaard, M.: Solving hard mixed integer programming problems with xpress-mp: A miplib 2003 case study. Rutcor Research Report RRR 2-2007. (2007)
  14. 14.

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Industrial EngineeringUniversity of PittsburghPittsburghUSA

Personalised recommendations