POD a-posteriori error estimates for linear-quadratic optimal control problems

  • F. Tröltzsch
  • S. VolkweinEmail author


The main focus of this paper is on an a-posteriori analysis for the method of proper orthogonal decomposition (POD) applied to optimal control problems governed by parabolic and elliptic PDEs. Based on a perturbation method it is deduced how far the suboptimal control, computed on the basis of the POD model, is from the (unknown) exact one. Numerical examples illustrate the realization of the proposed approach for linear-quadratic problems governed by parabolic and elliptic partial differential equations.


Optimal control Model reduction Proper orthogonal decomposition A-posteriori error estimates 


  1. 1.
    Arada, N., Casas, E., Tröltzsch, F.: Error estimates for the numerical approximation of a semilinear elliptic control problem. Comput. Optim. Appl. 23, 201–229 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Atwell, J.A., Borggaard, J.T., King, B.B.: Reduced order controllers for Burgers’ equation with a nonlinear observer. Int. J. Appl. Math. Comput. Sci. 11, 1311–1330 (2001) zbMATHMathSciNetGoogle Scholar
  3. 3.
    Arian, E., Fahl, M., Sachs, E.W.: Trust-region proper orthogonal decomposition for flow control. Technical Report 2000-25, ICASE (2000) Google Scholar
  4. 4.
    Benner, P., Quintana-Ortí, E.S.: Model reduction based on spectral projection methods. In: Benner, P., Mehrmann, V., Sorensen, D.C. (eds.) Reduction of Large-Scale Systems. Lecture Notes in Computational Science and Engineering, vol. 45, pp. 5–48 (2005) Google Scholar
  5. 5.
    Bensoussan, A., Da Prato, G., Delfour, M.C., Mitter, S.K.: Representation and Control of Infinite Dimensional Systems, vol. I. Birkhäuser, Basel (1992) zbMATHGoogle Scholar
  6. 6.
    Casas, E., Raymond, J.-P.: Error estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations. SIAM J. Control Optim. 45, 1586–1611 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Casas, E., Tröltzsch, F.: Error estimates for the finite-element approximation of a semilinear elliptic control problem. Control Cybern. 31, 695–712 (2002) zbMATHGoogle Scholar
  8. 8.
    Dautray, R., Lions, J.-L.: Evolution Problems I. Mathematical Analysis and Numerical Methods for Science and Technology, vol. 5. Springer, Berlin (1992) zbMATHGoogle Scholar
  9. 9.
    Diwoky, F., Volkwein, S.: Nonlinear boundary control for the heat equation utilizing proper orthogonal decomposition. Int. Ser. Numer. Math. 138, 73–87 (2001) MathSciNetGoogle Scholar
  10. 10.
    Henri, T., Yvon, M.: Convergence estimates of POD Galerkin methods for parabolic problems. Technical Report No. 02-48, Institute of Mathematical Research of Rennes (2002) Google Scholar
  11. 11.
    Hepberger, A.: Mathematical methods for the prediction of the interior car noise in the middle frequency range. PhD thesis, TU Graz, Institute for Mathematics, Austria (2002) Google Scholar
  12. 12.
    Hepberger, A., Volkwein, S., Diwoky, F., Priebsch, H.-H.: Impedance identification out of pressure data with a hybrid measurement-simulation methodology up to 1 kHz. In: Proceedings of International Conference on Noise and Vibration Engineering, Leuven, Belgium (2006) Google Scholar
  13. 13.
    Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semi-smooth Newton method. SIAM J. Optim. 13, 865–888 (2003) zbMATHCrossRefGoogle Scholar
  14. 14.
    Hinze, M., Volkwein, S.: Error estimates for abstract linear-quadratic optimal control problems using proper orthogonal decomposition. Comput. Optim. Appl. 39, 319–345 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Holmes, P., Lumley, J.L., Berkooz, G.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge Monographs on Mechanics. Cambridge University Press, Cambridge (1996) zbMATHGoogle Scholar
  16. 16.
    Kunisch, K., Volkwein, S.: Proper orthogonal decomposition for optimality systems. ESAIM: Math. Model. Numer. Anal. 42, 1–23 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Kunisch, K., Volkwein, S.: Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J. Numer. Anal. 40, 492–515 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Lall, S., Marsden, J.E., Glavaski, S.: A subspace approach to balanced truncation for model reduction of nonlinear control systems. Int. J. Robust Nonlinear Control 12, 519–535 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Lasiecka, I.: Convergence estimates for semidiscrete approximations of nonselfadjoint parabolic equations. SIAM J. Numer. Anal. 21, 894–909 (1984) zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Lasiecka, I.: Ritz-Galerkin approximation of abstract parabolic boundary value problems with rough boundary data—L p-theory. Math. Comput. 47, 55–75 (1986) zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Lasiecka, I., Triggiani, R.: Control Theory for Partial Differential Equations: Continuous and Approximation Theories. 1: Abstract Parabolic Systems. Cambridge University Press, Cambridge (2000) Google Scholar
  22. 22.
    Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971) zbMATHGoogle Scholar
  23. 23.
    Ly, H.V., Tran, H.T.: Modeling and control of physical processes using proper orthogonal decomposition. Math. Comput. Model. 33, 223–236 (2001) zbMATHCrossRefGoogle Scholar
  24. 24.
    Malanowski, K., Büskens, C.,  Maurer, H.: Convergence of approximations to nonlinear control problems. In: Fiacco, A.V. (ed.) Mathematical Programming with Data Perturbation, pp. 253–284. Marcel Dekker, New York (1997) Google Scholar
  25. 25.
    Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operation Research, 2nd edn. (2006) Google Scholar
  26. 26.
    Ravindran, S.S.: Adaptive reduced order controllers for a thermal flow system using proper orthogonal decomposition. SIAM J. Sci. Comput. 28, 1924–1942 (2002) CrossRefMathSciNetGoogle Scholar
  27. 27.
    Read, M., Simon, B.: Methods of Modern Mathematical Physics I: Functional Analysis. Academic Press, Boston (1980) Google Scholar
  28. 28.
    Rowley, C.W.: Model reduction for fluids, using balanced proper orthogonal decomposition. Int. J. Bifurc. Chaos 15, 997–1013 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Volkwein, S.: Model Reduction using Proper Orthogonal Decomposition. Lecture Notes, Institute of Mathematics and Scientific Computing, University of Graz. see
  30. 30.
    Volkwein, S., Hepberger, A.: Impedance identification by POD model reduction techniques. at-Autometisierungstechnik 8, 437–446 (2008) CrossRefGoogle Scholar
  31. 31.
    Willcox, K., Peraire, J.: Balanced model reduction via the proper orthogonal decomposition. In: American Institute of Aeronautics and Astronautics (AIAA), pp. 2323–2330 (2002) Google Scholar
  32. 32.
    Yosida, K.: Functional Analysis. Springer, Berlin (1995) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Institute of Mathematics, Faculty II—Mathematics and Natural SciencesBerlin University of TechnologyBerlinGermany
  2. 2.Institute for Mathematics and Scientific ComputingUniversity of GrazGrazAustria

Personalised recommendations