Computational Optimization and Applications

, Volume 47, Issue 2, pp 207–235 | Cite as

An iterative approach for cone complementarity problems for nonsmooth dynamics

  • Mihai AnitescuEmail author
  • Alessandro Tasora


Aiming at a fast and robust simulation of large multibody systems with contacts and friction, this work presents a novel method for solving large cone complementarity problems by means of a fixed-point iteration. The method is an extension of the Gauss-Seidel and Gauss-Jacobi method with overrelaxation for symmetric convex linear complementarity problems. The method is proved to be convergent under fairly standard assumptions and is shown by our tests to scale well up to 500,000 contact points and more than two millions of unknowns.


Iterative methods Cone complementarity problems LCP Complementarity Contacts Multibody 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anitescu, M.: Optimization-based simulation of nonsmooth rigid multibody dynamics. Math. Program. 105(1), 113–143 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Anitescu, M., Hart, G.D.: A constraint-stabilized time-stepping approach for rigid multibody dynamics with joints, contact and friction. Int. J. Numer. Methods Eng. 60(14), 2335–2371 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Anitescu, M., Hart, G.D.: A fixed-point iteration approach for multibody dynamics with contact and friction. Math. Program. Ser. B 101(1), 3–32 (2004) zbMATHMathSciNetGoogle Scholar
  4. 4.
    Anitescu, M., Potra, F.A.: Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems. Nonlinear Dyn. 14, 231–247 (1997) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Anitescu, M., Potra, F.A.: Time-stepping schemes for stiff multi-rigid-body dynamics with contact and friction. Int. J. Numer. Methods Eng. 55(7), 753–784 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Anitescu, M., Cremer, J.F., Potra, F.A.: Formulating 3d contact dynamics problems. Mech. Struct. Mach. 24(4), 405–437 (1996) CrossRefMathSciNetGoogle Scholar
  7. 7.
    Anitescu, M., Potra, F.A., Stewart, D.: Time-stepping for three-dimensional rigid-body dynamics. Comput. Methods Appl. Mech. Eng. 177, 183–197 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Baraff, D.: Issues in computing contact forces for non-penetrating rigid bodies. Algorithmica 10, 292–352 (1993) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Baraff, D.: Fast contact force computation for nonpenetrating rigid bodies. In: Computer Graphics (Proceedings of SIGGRAPH), pp. 23–34 (1994) Google Scholar
  10. 10.
    Cottle, R., Dantzig, G.: Complementary pivot theory of mathematical programming. Linear Algebra Appl. 1, 103–125 (1968) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Academic, Boston (1992) zbMATHGoogle Scholar
  12. 12.
    Donald, B.R., Pai, D.K.: On the motion of compliantly connected rigid bodies in contact: a system for analyzing designs for assembly. In: Proceedings of the Conf. on Robotics and Automation, pp. 1756–1762. IEEE, New York (1990) CrossRefGoogle Scholar
  13. 13.
    Gougar, H.D.: Advanced core design and fuel management for pebble-bed reactors. Ph.D. thesis, Department of Nuclear Engineering, Penn State University (2004) Google Scholar
  14. 14.
    Haug, E.J.: Computer Aided Kinematics and Dynamics of Mechanical Systems. Allyn and Bacon, Boston (1989) Google Scholar
  15. 15.
    Haug, E.J., Wu, S., Yang, S.: Dynamic mechanical systems with coulomb friction, stiction, impact and constraint addition-deletion. Mech. Mach. Theory 21(5), 407–416 (1986) CrossRefGoogle Scholar
  16. 16.
    Hiriart-Urruty, J.-B., Lemarechal, C.: Convex Analysis and Minimization Algorithms. Springer, Berlin (1993) Google Scholar
  17. 17.
    Jourdan, F., Alart, P., Jean, M.: A Gauss Seidel like algorithm to solve frictional contract problems. Comput. Methods Appl. Mech. Eng. 155, 31–47 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Kim, Y.J., Lin, M.C., Manocha, D.: Deep: Dual-space expansion for estimating penetration depth between convex polytopes. In: Proceedings of the 2002 International Conference on Robotics and Automation, vol. 1, pp. 921–926. Institute for Electrical and Electronics Engineering, New York (2002) Google Scholar
  19. 19.
    Lotstedt, P.: Mechanical systems of rigid bodies subject to unilateral constraints. SIAM J. Appl. Math. 42(2), 281–296 (1982) CrossRefMathSciNetGoogle Scholar
  20. 20.
    Marques, M.D.P.: Differential Inclusions in Nonsmooth Mechanical Problems: Shocks and Dry Friction. Progress in Nonlinear Differential Equations and Their Applications, vol. 9. Birkhäuser, Basel (1993) zbMATHGoogle Scholar
  21. 21.
    Moreau, J.J.: Standard inelastic shocks and the dynamics of unilateral constraints. In: Piero, G.D., Macieri, F. (eds.) Unilateral Problems in Structural Analysis, pp. 173–221. New York (1983). CISM Courses and Lectures no. 288 Google Scholar
  22. 22.
    Moreau, J.J., Jean, M.: Numerical treatment of contact and friction: The contact dynamics method. In: Proceedings of the Third Biennial Joint Conference on Engineering Systems and Analysis, pp. 201–208. Montpellier, France, July 1996 Google Scholar
  23. 23.
    Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1993) Google Scholar
  24. 24.
    Murty, K.G.: Linear Complementarity, Linear and Nonlinear Programming. Helderman, Berlin (1988) zbMATHGoogle Scholar
  25. 25.
    Pang, J.-S., Stewart, D.: A unified approach to frictional contact problems. Int. J. Eng. Sci. 37(13), 1747–1768 (1999) CrossRefMathSciNetGoogle Scholar
  26. 26.
    Pang, J.-S., Stewart, D.: Differential variational inequalities. Math. Program. 113(2), 345–424 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Pang, J.-S., Stewart, D.: Solution dependence on initial conditions in differential variational inequalities. Math. Program. 116(1), 429–460 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Pang, J.-S., Trinkle, J.C.: Complementarity formulations and existence of solutions of dynamic multi-rigid-body contact problems with coulomb friction. Math. Program. 73(2), 199–226 (1996) CrossRefMathSciNetGoogle Scholar
  29. 29.
    Pang, J.-S., Kumar, V., Song, P.: Convergence of time-stepping method for initial and boundary-value frictional compliant contact problems. SIAM J. Numer. Anal. 43(5), 2200–2226 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Pang, J.-S., Kumar, V., Trinkle, J.: On a continuous-time quasistatic frictional contact model with local compliance. Int. J. Numer. Methods Eng. (2007, submitted) Google Scholar
  31. 31.
    Pfeiffer, F., Glocker, C.: Multibody Dynamics with Unilateral Contacts. Wiley, New York (1996) zbMATHCrossRefGoogle Scholar
  32. 32.
    Potra, F.A., Anitescu, M., Gavrea, B., Trinkle, J.: A linearly implicit trapezoidal method for integrating stiff multibody dynamics with contact and friction. Int. J. Numer. Methods Eng. 66(7), 1079–1124 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Rycroft, C., Grest, G., Landry, J., Bazant, M.: Analysis of granular flow in a pebble-bed nuclear reactor. Phys. Rev. E 74, 021306 (2006) CrossRefGoogle Scholar
  34. 34.
    Song, P., Kraus, P., Kumar, V., Dupont, P.: Analysis of rigid-body dynamic models for simulation of systems with frictional contacts. J. Appl. Mech. 68(1), 118–128 (2001) zbMATHCrossRefGoogle Scholar
  35. 35.
    Song, P., Pang, J.-S., Kumar, V.: A semi-implicit time-stepping model for frictional compliant contact problems. Int. J. Numer. Methods Eng. 60(13), 267–279 (2004) CrossRefMathSciNetGoogle Scholar
  36. 36.
    Stewart, D.E.: Convergence of a time-stepping scheme for rigid body dynamics and resolution of Painleve’s problems. Arch. Ration. Mech. Anal. 145(3), 215–260 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Stewart, D.E.: Rigid-body dynamics with friction and impact. SIAM Rev. 42(1), 3–39 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Stewart, D.E., Trinkle, J.C.: An implicit time-stepping scheme for rigid-body dynamics with inelastic collisions and Coulomb friction. Int. J. Numer. Methods Eng. 39, 2673–2691 (1996) zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Tasora, A.: Chrono::engine project, web page. (2006)
  40. 40.
    Tasora, A., Manconi, E., Silvestri, M.: Un nuovo metodo del simplesso per il problema di complementarità lineare mista in sistemi multibody con vincoli unilateri. In: Proceedings of AIMETA 05, Firenze, Italy (2005) Google Scholar
  41. 41.
    Trinkle, J., Pang, J.-S., Sudarsky, S., Lo, G.: On dynamic multi-rigid-body contact problems with coulomb friction. Z. Angew. Math. Mech. 77, 267–279 (1997) zbMATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Tseng, P., Yun, S.: A coordinate gradient descent method for nonsmooth separable minimization. Math. Program. 117, 387–423 (2009) zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© US Government 2008

Authors and Affiliations

  1. 1.Mathematics and Computer Science DivisionArgonne National LaboratoryArgonneUSA
  2. 2.Dipartimento di Ingegneria IndustrialeUniversità degli Studi di ParmaParmaItaly

Personalised recommendations