A posteriori error estimation and adaptivity for elliptic optimal control problems with state constraints

Article

Abstract

In this paper optimal control problems governed by elliptic semilinear equations and subject to pointwise state constraints are considered. These problems are discretized using finite element methods and a posteriori error estimates are derived assessing the error with respect to the cost functional. These estimates are used to obtain quantitative information on the discretization error as well as for guiding an adaptive algorithm for local mesh refinement. Numerical examples illustrate the behavior of the method.

Keywords

Optimal control State constraints Semilinear equations Finite elements A posteriori error estimation 

References

  1. 1.
    Becker, R., Kapp, H., Rannacher, R.: Adaptive finite element methods for optimal control of partial differential equations: basic concepts. SIAM J. Control Optim. 39(1), 113–132 (2000) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation. In: Iserles, A. (ed.) Acta Numerica 2001, pp. 1–102. Cambridge University Press, London (2001) Google Scholar
  3. 3.
    Becker, R., Vexler, B.: A posteriori error estimation for finite element discretizations of parameter identification problems. Numer. Math. 96(3), 435–459 (2004) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Becker, R., Vexler, B.: Mesh refinement and numerical sensitivity analysis for parameter calibration of partial differential equations. J. Comput. Phys. 206(1), 95–110 (2005) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Braess, D.: Finite Elements: Theory, Fast Solvers and Applications in Solid Mechanics. Cambridge University Press, Cambridge (2007) MATHGoogle Scholar
  6. 6.
    Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, Berlin (2002) MATHGoogle Scholar
  7. 7.
    Carey, G.F., Oden, J.T.: Finite Elements. Computational Aspects, vol. 3. Prentice-Hall, New York (1984) MATHGoogle Scholar
  8. 8.
    Casas, E.: Control of an elliptic problem with pointwise state constraints. SIAM J. Control Optim. 24, 1309–1318 (1986) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Casas, E.: Boundary control of semilinear elliptic equations with pointwise state constraints. SIAM J. Control Optim. 34, 933–1006 (1993) MathSciNetGoogle Scholar
  10. 10.
    Cherednichenko, S., Krumbiegel, K., Rösch, A.: Error estimates for the Lavrentiev regularization of elliptic optimal control problems. Inverse Probl. (2008, accepted) Google Scholar
  11. 11.
    Deckelnick, K., Hinze, M.: Convergence of a finite element approximation to a state constrained elliptic control problem. SIAM J. Numer. Anal. 35, 1937–1953 (2007) CrossRefMathSciNetGoogle Scholar
  12. 12.
    Deckelnick, K., Hinze, M.: A finite element approximation to elliptic control problems in the presence of control and state constraints. Hambg. Beitr. Angew. Math. 2007-01 (2007) Google Scholar
  13. 13.
    Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Introduction to adaptive methods for differential equations. In: Iserles, A. (ed.) Acta Numerica 1995, pp. 105–158. Cambridge University Press, London (1995) Google Scholar
  14. 14.
    The finite element toolkit Gascoigne. http://www.gascoigne.uni-hd.de
  15. 15.
    Grisvard, P.: Singularities in Boundary Value Problems. Springer, Masson (1992) MATHGoogle Scholar
  16. 16.
    Günther, A., Hinze, M.: A posteriori error control of a state constrained elliptic control problem. J. Numer. Math. (2008, to appear) Google Scholar
  17. 17.
    Hintermüller, M., Hoppe, R.H.W., Iliash, Y., Kieweg, M.: An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints. ESIAM Control Optim. Calc. Var. 14, 540–560 (2008) MATHCrossRefGoogle Scholar
  18. 18.
    Hintermüller, M., Hoppe, R.H.W.: Goal-oriented adaptivity in control constrained optimal control of partial differential equations. SIAM J. Control Optim. 47(4), 1721–1743 (2008) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Hintermüller, M., Kunisch, K.: Feasible and noninterior path-following in constrained minimization with low multiplier regularity. SIAM J. Control Optim. 45(4), 1198–1221 (2006) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Hintermüller, M., Kunisch, K.: Stationary optimal control problems with pointwise state constraints (2007, to appear) Google Scholar
  21. 21.
    Hinze, M.: A variational discretization concept in control constrained optimization: the linear-quadratic case. Comput. Optim. Appl. 30(1), 45–61 (2005) MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Hoppe, R.H.W., Kieweg, M.: A posteriori error estimation of finite element approximations of pointwise state constrained distributed control problems (2007, submitted) Google Scholar
  23. 23.
    Li, R., Liu, W., Ma, H., Tang, T.: Adaptive finite element approximation for distributed elliptic optimal control problems. SIAM J. Control Optim. 41(5), 1321–1349 (2002) MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Liu, W.: Adaptive multi-meshes in finite element approximation of optimal control. Contemporary Mathematics 383, 113–132 (2005) Google Scholar
  25. 25.
    Liu, W., Gong, W., Yan, N.: A new finite element approximation of a state constrained optimal control problem. J. Comput. Math. (2008, accepted) Google Scholar
  26. 26.
    Meidner, D., Vexler, B.: Adaptive space-time finite element methods for parabolic optimization problems. SIAM J. Control Optim. 46(1), 116–142 (2007) MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Meyer, C.: Error estimates for the finite-element approximation of an elliptic control problem with pointwise state and control constraints. Control Cybern. (2008, to appear) Google Scholar
  28. 28.
    Meyer, C., Hinze, M.: Stability of infinite dimensional control problems with pointwise state constraints (2007, submitted) Google Scholar
  29. 29.
    Meyer, C., Prüfert, U., Tröltzsch, F.: On two numerical methods for state-constrained elliptic control problems. Optim. Methods Softw. 22, 871–899 (2007) MATHMathSciNetGoogle Scholar
  30. 30.
    Meyer, C., Rösch, A., Tröltzsch, F.: Optimal control of PDEs with regularized pointwise state constraints. Comput. Optim. Appl. 33, 209–228 (2006) MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    RoDoBo: a C++ library for optimization with stationary and nonstationary PDEs with interface to Gascoigne. http://www.rodobo.uni-hd.de
  32. 32.
    Schiela, A.: Barrier methods for optimal control problems with state constraints (2007, submitted) Google Scholar
  33. 33.
    Schmich, M., Vexler, B.: Adaptivity with dynamic meshes for space-time finite element discretizations of parabolic equations. SIAM J. Sci. Comput. 30(1), 369–393 (2008) MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Tröltzsch, F.: Optimale Steuerung partieller Differentialgleichungen. Vieweg, Wiesbaden (2005) MATHGoogle Scholar
  35. 35.
    Verfürth, R.: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley Teubner, New York/Stuttgart (1996) MATHGoogle Scholar
  36. 36.
    Vexler, B., Wollner, W.: Adaptive finite elements for elliptic optimization problems with control constraints. SIAM J. Control Optim. 47(1), 509–534 (2008) MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    VisuSimple: an interactive VTK-based visualization and graphics/mpeg-generation program. http://www.visusimple.uni-hd.de

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Lehrstuhl für Mathematische Optimierung, Fakultät für MathematikTechnische Universität MünchenGarching b. MünchenGermany

Personalised recommendations