A column generation method for the multiple-choice multi-dimensional knapsack problem

  • N. Cherfi
  • M. HifiEmail author


In this paper, we propose to solve large-scale multiple-choice multi-dimensional knapsack problems. We investigate the use of the column generation and effective solution procedures. The method is in the spirit of well-known local search metaheuristics, in which the search process is composed of two complementary stages: (i) a rounding solution stage and (ii) a restricted exact solution procedure. The method is analyzed computationally on a set of problem instances of the literature and compared to the results reached by both Cplex solver and a recent reactive local search. For these instances, most of which cannot be solved to proven optimality in a reasonable runtime, the proposed method improves 21 out of 27.


Branch-and-bound Column generation Heuristics Knapsack Optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akbar, M.M., Sadid, M.W.H., Rahman, M.S., Newton, M.A.H., Kaykobad, M.: A Parallel heuristic algorithm for multiple-choice multi-dimensional knapsack problem. Working paper, Department of CSE, BUET, Dhaka-1000, Bangladesh (2005) Google Scholar
  2. 2.
    Balas, E., Zemel, E.: An algorithm for large zero-one knapsack problem. Oper. Res. 28, 1130–1154 (1980) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Björklund, P., Värbrand, P., Yuan, D.: A column generation method for spatial TDMA scheduling in ad hoc networks. Working paper, Department of Science and Technology, Linköping Institute of Technology, Norrköping, Sweden. To appear in Ad Hoc Netw. Google Scholar
  4. 4.
    Fayard, D., Plateau, G.: An algorithm for the solution of the 0-1 knapsack problem. Computing 28, 269–287 (1982) zbMATHCrossRefGoogle Scholar
  5. 5.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman, New York (1979) zbMATHGoogle Scholar
  6. 6.
    Gilmore, P.C., Gomory, R.E.: A linear programming approach to the cutting stock problem. Oper. Res. 9, 849–859 (1961) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Gilmore, P.C., Gomory, R.E.: A linear programming approach to the cutting stock problem, part II. Oper. Res. 14, 94–120 (1963) CrossRefMathSciNetGoogle Scholar
  8. 8.
    Hifi, M., Michrafy, M., Sbihi, A.: A reactive local search-based algorithm for the multiple-choice multi-dimensional knapsack problem. Comput. Optim. Appl. 33, 271–285 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hifi, M., Michrafy, M., Sbihi, A.: Heuristic algorithms for the multiple-choice multidimensional knapsack problem. J. Oper. Res. Soc. 55, 1323–1332 (2004) zbMATHCrossRefGoogle Scholar
  10. 10.
    Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin (2005). ISBN 3-540-40286-1 Google Scholar
  11. 11.
    Khan, S.: Quality adaptation in a multi-session adaptive multimedia system: model and architecture. Ph.D. thesis, Department of Electronics and Computer Engineering, University of Victoria (1998) Google Scholar
  12. 12.
    Khan, S., Li, K.F., Manning, E.G., Akbar, MD.M.: Solving the knapsack problem for adaptive multimedia systems. Int. J. Studia Inf. 2, 154–174 (2002). Special Issue on Cutting, Packing and Knapsacking Problems Google Scholar
  13. 13.
    Mehrotra, A., Trick, M.A.: A column generation approach for graph coloring. INFORMS J. Comput. 8, 344–354 (1996) zbMATHCrossRefGoogle Scholar
  14. 14.
    Moser, M., Jokanović, D.P., Shiratori, N.: An algorithm for the multidimensional multiple-choice knapsack problem. IEECE Trans. Fundam. Electron. 80, 582–589 (1997) Google Scholar
  15. 15.
    Toyoda, Y.: A simplified algorithm for obtaining approximate solution to zero-one programming problems. Manag. Sci. 21, 1417–1427 (1975) zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Wolsey, L.A.: Integer Programming. Wiley-Interscience, New York (1998) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.CES, Equipe CERMSEM, Maison des Sciences EconomiquesUniversité Paris 1 Panthéon-SorbonneParis Cedex 13France
  2. 2.MIS, Axe Discrete Optimization and Re-optimizationUniversité de Picardie Jules VerneAmiensFrance

Personalised recommendations