Computational Optimization and Applications

, Volume 45, Issue 1, pp 111–141 | Cite as

Heuristics for the facility location and design (1|1)-centroid problem on the plane

  • J. L. Redondo
  • J. FernándezEmail author
  • I. García
  • P. M. Ortigosa


A chain (the leader) wants to set up a single new facility in a planar market where similar facilities of a competitor (the follower), and possibly of its own chain, are already present. The follower will react by locating another single facility after the leader locates its own facility. Fixed demand points split their demand probabilistically over all facilities in the market in proportion to their attraction to each facility, determined by the different perceived qualities of the facilities and the distances to them, through a gravitational model. Both the location and the quality (design) of the new leader’s facility are to be found. The aim is to maximize the profit obtained by the leader following the follower’s entry. Four heuristics are proposed for this hard-to-solve global optimization problem, namely, a grid search procedure, an alternating method and two evolutionary algorithms. Computational experiments show that the evolutionary algorithm called UEGO_cent.SASS provides the best results.


Continuous location Competition Centroid problem Stackelberg problem Evolutionary algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benati, S., Laporte, G.: Tabu search algorithms for the (r|{X}p)-medianoid and (r|p)-centroid problems. Location Sci. 2(4), 193–204 (1994) zbMATHGoogle Scholar
  2. 2.
    Bhadury, J., Eiselt, H.A., Jaramillo, J.H.: An alternating heuristic for medianoid and centroid problems in the plane. Comput. Oper. Res. 30(4), 553–565 (2003) zbMATHCrossRefGoogle Scholar
  3. 3.
    Drezner, T.: Optimal continuous location of a retail facility, facility attractiveness, and market share: an interactive model. J. Retail. 70(1), 49–64 (1994) CrossRefGoogle Scholar
  4. 4.
    Drezner, T.: Location of multiple retail facilities with limited budget constraints in continuous space. J. Retail. Consum. Serv. 5(3), 173–184 (1998) CrossRefGoogle Scholar
  5. 5.
    Drezner, T., Drezner, Z.: Facility location in anticipation of future competition. Location Sci. 6(1), 155–173 (1998) CrossRefGoogle Scholar
  6. 6.
    Drezner, T., Drezner, Z.: Retail facility location under changing market conditions. IMA J. Manag. Math. 13(4), 283–302 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Drezner, T., Drezner, Z.: Finding the optimal solution to the Huff based competitive location model. Comput. Manag. Sci. 1(2), 193–208 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Drezner, Z.: Competitive location strategies for two facilities. Reg. Sci. Urban Econ. 12(4), 485–493 (1982) CrossRefGoogle Scholar
  9. 9.
    Drezner, Z.: Facility Location: A Survey of Applications and Methods. Springer, Berlin (1995) Google Scholar
  10. 10.
    Drezner, Z., Hamacher, H.W.: Facility Location. Applications and Theory. Springer, Berlin (2002) zbMATHGoogle Scholar
  11. 11.
    Eiselt, H.A., Laporte, G.: Sequential location problems. Eur. J. Oper. Res. 96(2), 217–231 (1997) zbMATHCrossRefGoogle Scholar
  12. 12.
    Eiselt, H.A., Laporte, G., Thisse, J.F.: Competitive location models: a framework and bibliography. Transp. Sci. 27(1), 44–54 (1993) zbMATHCrossRefGoogle Scholar
  13. 13.
    Fernández, J., Pelegrín, B., Plastria, F., Tóth, B.: Solving a Huff-like competitive location and design model for profit maximization in the plane. Eur. J. Oper. Res. 179(3), 1274–1287 (2007) zbMATHCrossRefGoogle Scholar
  14. 14.
    Francis, R.L., McGinnis, L.F., White, J.A.: Facility Layout and Location: An Analytical Approach. Prentice Hall, Englewood Cliffs (1992) Google Scholar
  15. 15.
    González-Linares, J.M., Guil, N., Zapata, E.L., Ortigosa, P.M., García, I.: Deformable shapes detection by stochastic optimization. In: 2000 IEEE International Conference on Image Processing (ICIP’2000). Vancouver, Canada, 2000 Google Scholar
  16. 16.
    Hakimi, S.L.: On locating new facilities in a competitive environment. Eur. J. Oper. Res. 12(1), 29–35 (1983) zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Hodgson, M.J.: A location–allocation model maximizing consumers’ welfare. Reg. Stud. 15(6), 493–506 (1981) CrossRefGoogle Scholar
  18. 18.
    Huff, D.L.: Defining and estimating a trading area. J. Mark. 28(3), 34–38 (1964) CrossRefMathSciNetGoogle Scholar
  19. 19.
    Kilkenny, M., Thisse, J.F.: Economics of location: a selective survey. Comput. Oper. Res. 26(14), 1369–1394 (1999) zbMATHCrossRefGoogle Scholar
  20. 20.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983) CrossRefMathSciNetGoogle Scholar
  21. 21.
    Love, R.F., Morris, J.G., Wesolowsky, G.O.: Facilities Location. Models and Methods. North-Holland, Amsterdam (1988) zbMATHGoogle Scholar
  22. 22.
    Okabe, A., Suzuki, A.: Stability of spatial competition for a large number of firms on a bounded two-dimensional space. Environ. Plan. A 19(8), 1067–1082 (1987) CrossRefGoogle Scholar
  23. 23.
    Ortigosa, P.M., García, I., Jelasity, M.: Reliability and performance of UEGO, a clustering-based global optimizer. J. Glob. Optim. 19(3), 265–289 (2001) zbMATHCrossRefGoogle Scholar
  24. 24.
    Plastria, F.: Static competitive facility location: an overview of optimisation approaches. Eur. J. Oper. Res. 129(3), 461–470 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Plastria, F., Carrizosa, E.: Optimal location and design of a competitive facility. Math. Program. 100(2), 247–265 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Redondo, J.L., Fernández, J., García, I., Ortigosa, P.M.: A robust and efficient global optimization algorithm for planar competitive location problems. Ann. Oper. Res. (2008, to appear). DOI:  10.1007/s10479-007-0233-x Google Scholar
  27. 27.
    Redondo, J.L., Ortigosa, P.M., García, I., Fernández, J.J.: Image registration in electron microscopy. A stochastic optimization approach. In: Proceedings of the International Conference on Image Analysis and Recognition, ICIAR 2004. Lecture Notes in Computer Science, vol. 3212(II), pp. 141–149 (2004) Google Scholar
  28. 28.
    Solis, F.J., Wets, R.J.B.: Minimization by random search techniques. Math. Oper. Res. 6(1), 19–30 (1981) zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Weber, A.: Uber den Standort der Industrien 1. Teil: Reine Theorie des Standortes. Tübingen, Niemeyer (1909) Google Scholar
  30. 30.
    Weiszfeld, E.: Sur le point pour lequel la somme des distances de n points donnés est minimum. Tohoku Math. J. 43, 355–386 (1937) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • J. L. Redondo
    • 1
  • J. Fernández
    • 2
    • 3
    Email author
  • I. García
    • 1
  • P. M. Ortigosa
    • 1
  1. 1.Department of Computer Architecture and ElectronicsUniversity of AlmeríaAlmeríaSpain
  2. 2.Facultad de MatemáticasUniversidad de MurciaMurciaSpain
  3. 3.Department of Statistics and Operations ResearchUniversity of MurciaMurciaSpain

Personalised recommendations