Advertisement

Hybrid heuristics for the maximum diversity problem

  • Micael Gallego
  • Abraham Duarte
  • Manuel Laguna
  • Rafael Martí
Article

Abstract

The maximum diversity problem presents a challenge to solution methods based on heuristic optimization. We undertake the development of hybrid procedures within the scatter search framework with the goal of uncovering the most effective designs to tackle this difficult but important problem. Our research revealed the effectiveness of adding simple memory structures (based on recency and frequency) to key scatter search mechanisms. Our extensive experiments and related statistical tests show that the most effective scatter search variant outperforms state-of-the-art methods.

Keywords

Reference Solution Improvement Method Combination Method Trial Solution Scatter Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Campos, V., Glover, F., Laguna, M., Martí, R.: An experimental evaluation of a scatter search for the linear ordering problem. J. Glob. Optim. 21, 397–414 (2001) zbMATHCrossRefGoogle Scholar
  2. 2.
    Duarte, A., Martí, R.: Tabu search and GRASP for the maximum diversity problem. Eur. J. Oper. Res. 178, 71–84 (2007) zbMATHCrossRefGoogle Scholar
  3. 3.
    Ghosh, J.B.: Computational aspects of the maximum diversity problem. Oper. Res. Lett. 19, 175–181 (1996) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Glover, F., Kuo, C.C., Dhir, K.S.: Heuristic algorithms for the maximum diversity problem. J. Inf. Optim. Sci. 19(1), 109–132 (1998) zbMATHGoogle Scholar
  5. 5.
    Glover, F., Laguna, M.: Tabu Search. Kluwer Academic, Dordrecht (1997) zbMATHGoogle Scholar
  6. 6.
    Kuo, C.C., Glover, F., Dhir, K.S.: Analyzing and modeling the maximum diversity problem by zero-one programming. Decis. Sci. 24(6), 1171–1185 (1993) CrossRefGoogle Scholar
  7. 7.
    Laguna, M., Martí, R.: Scatter Search: Methodology and Implementations in C. Kluwer Academic, Boston (2003) Google Scholar
  8. 8.
    Laguna, M., Martí, R.: Experimental testing of advanced scatter search for global optimization of multimodal functions. J. Glob. Optim. 33, 235–255 (2005) zbMATHCrossRefGoogle Scholar
  9. 9.
    Martí, R.: Scatter search methods for optimization. Eur. J. Oper. Res. 169(2), (2006) Google Scholar
  10. 10.
    Resende, M.G.C., Ribeiro, C.C.: Greedy randomized adaptive search procedures. In: Glover, F., Kochenberger, G. (eds.) State-of-the-Art Handbook in Metaheuristics, pp. 219–250. Kluwer Academic, Boston (2001) Google Scholar
  11. 11.
    Silva, G.C., Ochi, L.S., Martins, S.L.: Experimental comparison of greedy randomized adaptive search procedures for the maximum diversity problem. In: Lecture Notes in Computer Science, vol. 3059, pp. 498–512. Springer, Berlin (2004) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Micael Gallego
    • 1
  • Abraham Duarte
    • 1
  • Manuel Laguna
    • 2
  • Rafael Martí
    • 3
  1. 1.Departamento de Ciencias de la ComputaciónUniversidad Rey Juan CarlosMadridSpain
  2. 2.Leeds School of BusinessUniversity of Colorado at BoulderBoulderUSA
  3. 3.Departamento de Estadística e Investigación OperativaUniversidad de ValenciaValenciaSpain

Personalised recommendations