Computational Optimization and Applications

, Volume 43, Issue 2, pp 213–233

A virtual control concept for state constrained optimal control problems



A linear elliptic control problem with pointwise state constraints is considered. These constraints are given in the domain. In contrast to this, the control acts only at the boundary. We propose a general concept using virtual control in this paper. The virtual control is introduced in objective, state equation, and constraints. Moreover, additional control constraints for the virtual control are investigated. An error estimate for the regularization error is derived as main result of the paper. The theory is illustrated by numerical tests.


Optimal control Elliptic equation State constraints Boundary control Regularization Virtual control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arada, N., Raymond, J.P.: Optimal control problems with mixed control-state constraints. SIAM J. Control Optim. 39, 1391–1407 (2000) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bergounioux, M., Kunisch, K.: On the structure of the Lagrange multiplier for state-constrained optimal control problems. Syst. Control Lett. 48, 169–176 (2002) CrossRefMathSciNetGoogle Scholar
  3. 3.
    Casas, E.: Boundary control of semilinear elliptic equations with pointwise state constraints. SIAM J. Control Optim. 31, 993–1006 (1993) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cherednichenko, S., Rösch, A.: Error estimates for the regularization of optimal control problems with pointwise control and state constraints. ZAA (2008, to appear) Google Scholar
  5. 5.
    Hintermüller, M., Kunisch, K.: Path-following methods for a class of constrained minimization problems in function space. SIAM J. Optim. 17(1), 159–187 (2006) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set method as a semi-smooth Newton method. SIAM J. Optim. 13, 865–888 (2003) MATHCrossRefGoogle Scholar
  7. 7.
    Meyer, C., Prüfert, U., Tröltzsch, F.: On two numerical methods for state-constrained elliptic control problems. Preprint 5-2005, Inst. of Math TU Berlin (2005) Google Scholar
  8. 8.
    Meyer, C., Rösch, A., Tröltzsch, F.: Optimal control of PDEs with regularized pointwise state constraints. Comput. Optim. Appl. 33(2–3), 209–228 (2006) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Tröltzsch, F.: Optimale Steuerung partieller Differentialgleichungen–Theorie, Verfahren und Anwendungen. Vieweg, Wiesbaden (2005) MATHGoogle Scholar
  10. 10.
    Tröltzsch, F., Yousept, I.: A regularization method for the numerical solution of elliptic boundary control problems with pointwise state constraints. COAP (2006, accepted for publication) Google Scholar
  11. 11.
    Ulbrich, M.: Semismooth Newton methods for operator equations in function spaces. SIAM J. Optim 13, 805–842 (2003) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Johann Radon Institute for Computational and Applied Mathematics (RICAM)Austrian Academy of SciencesLinzAustria

Personalised recommendations