An algorithm for the generalized quadratic assignment problem

  • Peter M. Hahn
  • Bum-Jin Kim
  • Monique Guignard
  • J. MacGregor Smith
  • Yi-Rong Zhu
Article

Abstract

This paper reports on a new algorithm for the Generalized Quadratic Assignment problem (GQAP). The GQAP describes a broad class of quadratic integer programming problems, wherein M pair-wise related entities are assigned to N destinations constrained by the destinations’ ability to accommodate them. This new algorithm is based on a Reformulation Linearization Technique (RLT) dual ascent procedure. Experimental results show that the runtime of this algorithm is as good or better than other known exact solution methods for problems as large as M=20 and N=15.

Keywords

Combinatorial optimization Branch-and-bound Quadratic assignment problem Reformulation linearization technique Lagrangean dual Dual ascent procedure 

References

  1. 1.
    Adams, W.P., Sherali, H.D.: A tight linearization and an algorithm for zero-one quadratic programming problems. Manag. Sci. 32, 1274–1290 (1986) MathSciNetMATHGoogle Scholar
  2. 2.
    Adams, W.P., Sherali, H.D.: Linearization strategies for a class of zero-one mixed integer programming problems. Oper. Res. 38, 217–226 (1990) MathSciNetMATHGoogle Scholar
  3. 3.
    Adams, W.P., Guignard, M., Hahn, P.M., Hightower, W.L.: A level-2 reformulation-linearization technique bound for the quadratic assignment problem. Eur. J. Oper. Res. 180, 983–996 (2007) CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Anstreicher, K.M., Brixius, N.W.: A new bound for the quadratic assignment problem based on convex quadratic programming. Math. Program. 89, 341–357 (2001) CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Balachandran, V.: An integer generalized transportation model of optimal job assignment to computer networks. Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh, PA, Working Paper 34-72-3 (1972) Google Scholar
  6. 6.
    Benders, J.F., van Nunen, J.A.E.E.: A property of assignment type mixed integer linear programming problems. Oper. Res. Lett. 2, 47–52 (1983) CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Billionnet, A., Elloumi, S.: An algorithm for finding the k-best allocations of a tree structured program. J. Parallel Distrib. Comput. 26, 225–232 (1995) CrossRefMATHGoogle Scholar
  8. 8.
    Billionnet, A., Elloumi, S.: Best reduction of the quadratic semi-assignment problem. Discrete Appl. Math. (DAM) 109, 197–213 (2001) CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Burer, S., Vandenbussche, D.: Solving lift-and-project relaxations of binary integer programs. SIAM J. Optim. 16, 726–750 (2006) CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Cordeau, J.-F., Gaudioso, M., Laporte, G., Moccia, L.: A memetic heuristic for the generalized quadratic assignment problem. INFORMS J. Comput. 19, 433–443 (2006) CrossRefMathSciNetGoogle Scholar
  11. 11.
    Diaz, J.A., Fernandez, E.: A tabu search heuristic for the generalized assignment problem. Eur. J. Oper. Res. 132, 22–38 (2001) CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Drezner, Z., Hahn, P.M., Taillard, E.: Recent advances for the quadratic assignment problem with special emphasis on instances that are difficult for meta-heuristic methods. Ann. Oper. Res. 139, 65–94 (2005) CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Elloumi, S.: The task assignment problem and the constrained task assignment problem. Instances and Solution files, 2003. Available at: http://cedric.cnam.fr/oc/TAP/TAP.html
  14. 14.
    Elloumi, S., Roupin, F., Soutif, E.: Comparison of different lower bounds for the constrained module allocation problem. Technical Report TR CEDRIC No 473 (2003) Google Scholar
  15. 15.
    Fisher, M.L., Jaikumar, R.: A generalized assignment heuristic for vehicle routing. Networks 11, 109–124 (1981) CrossRefMathSciNetGoogle Scholar
  16. 16.
    Fisher, M.L., Jaikumar, R., Van Wassenhove, L.N.: A multiplier adjustment method for the generalized assignment problem. Manag. Sci. 32, 1095–1103 (1986) MATHGoogle Scholar
  17. 17.
    Grant, T.L.: An evaluation and analysis of the resolvent sequence method for solving the quadratic assignment problem. Master’s Thesis, Dept. of Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104 (1989) Google Scholar
  18. 18.
    Guignard, M., Rosenwein, M.: An improved dual-based algorithm for the generalized assignment problem. Oper. Res. 37, 658–663 (1989) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Guignard, M., Hahn, P.M., Ding, Z.: Hybrid ARQ symbol mapping in digital wireless communication systems based on the quadratic 3-dimensional assignment problem (Q3AP). NSF Grant: DMI-0400155 (2004) Google Scholar
  20. 20.
    Hahn, P.M., Grant, T.L.: Lower bounds for the quadratic assignment problem based upon a dual formulation. Oper. Res. 46, 912–922 (1998) MathSciNetMATHGoogle Scholar
  21. 21.
    Hahn, P.M., Krarup, J.: A hospital facility problem finally solved. J. Intell. Manuf. 12, 487–496 (2001) CrossRefGoogle Scholar
  22. 22.
    Hahn, P.M., Grant, T.L., Hall, N.: A branch-and-bound algorithm for the quadratic assignment problem based on the Hungarian method. Eur. J. Oper. Res. 108, 629–640 (1998) CrossRefMATHGoogle Scholar
  23. 23.
    Hahn, P.M., Hightower, W.L., Johnson, T.A., Guignard-Spielberg, M., Roucairol, C.: Tree elaboration strategies in branch-and-bound algorithms for solving the quadratic assignment problem. Yugosl. J. Oper. Res. 11, 41–60 (2001) MathSciNetMATHGoogle Scholar
  24. 24.
    Jörnsten, K., Näsberg, M.: A new Lagrangean-relaxation approach to the generalized assignment problem. Eur. J. Oper. Res. 27, 313–323 (1986) CrossRefMATHGoogle Scholar
  25. 25.
    Karisch, S.E., Çela, E., Clausen, J., Espersen, T.: A dual framework for lower bounds of the quadratic assignment problem based on linearization. Computing 63, 351–403 (1999) CrossRefMathSciNetMATHGoogle Scholar
  26. 26.
    Kim, B.-J.: Investigation of methods for solving new classes of quadratic assignment problems (QAPs). PhD thesis, Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104 (May 2006) Google Scholar
  27. 27.
    Laguna, M., Kelly, J.P., González-Velarde, J.L., Glover, F.: Tabu search for the multilevel generalized assignment problem. Eur. J. Oper. Res. 82, 176–189 (1995) CrossRefMATHGoogle Scholar
  28. 28.
    Lee, C.-G., Ma, Z.: The generalized quadratic assignment problem. Research Report, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, M5S 3G8, Canada (2004) Google Scholar
  29. 29.
    Loiola, E.M., de Abreu, N.M.M., Boaventura-Netto, P.O., Hahn, P.M., Querido, T.: A survey for the quadratic assignment problem. Invit. Rev. Eur. J. Oper. Res. 176, 657–690 (2007) MATHCrossRefGoogle Scholar
  30. 30.
    Magirou, V.F.: An improved partial solution to the task assignment and multiway cut problems. Oper. Res. Lett. 12, 3–10 (1992) CrossRefMathSciNetMATHGoogle Scholar
  31. 31.
    Magirou, V.F., Milis, J.Z.: An algorithm for the multiprocessor assignment problem. Oper. Res. Lett. 8, 351–356 (1989) CrossRefMathSciNetMATHGoogle Scholar
  32. 32.
    Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations. Wiley, New York (1990) MATHGoogle Scholar
  33. 33.
    Ramakrishnan, K.G., Resende, M.G.C., Ramachandran, B., Pekny, J.F.: Tight QAP bounds via linear programming. In: Pardalos, P.M., Migdalas, A., Burkard, E. (eds.) Combinatorial and Global Optimization, pp. 297–303. World Scientific, Republic of Singapore (2002) Google Scholar
  34. 34.
    Rendl, F., Sotirov, R.: Bounds for the quadratic assignment problem using the bundle method. Accepted to Mathematical Programming. Available at http://www.springerlink.com/content/a878n099r184510g/
  35. 35.
    Resende, M.G.C., Ramakrishnan, K.G., Drezner, Z.: Computing lower bounds for the quadratic assignment with an interior point algorithm for linear programming. Oper. Res. 43, 781–791 (1995) MathSciNetMATHGoogle Scholar
  36. 36.
    Romeijn, H.E., Morales, D.R.: A class of greedy algorithms for the generalized assignment problem. Discrete Appl. Math. 103, 209–235 (2000) CrossRefMathSciNetMATHGoogle Scholar
  37. 37.
    Ross, G.T., Soland, R.M.: A branch-and-bound algorithm for the generalized assignment problem. Math. Program. 8, 91–103 (1975) CrossRefMathSciNetMATHGoogle Scholar
  38. 38.
    Roupin, F.: From linear to semi-definite programming: an algorithm to obtain semidefinite relaxations for bivalent quadratic problems. J. Comb. Optim. 8, 469–493 (2004) CrossRefMathSciNetMATHGoogle Scholar
  39. 39.
    Sahni, S., Gonzalez, T.: P-complete approximation problems. J. Assoc. Comput. Mach. 23, 555–565 (1976) MathSciNetMATHGoogle Scholar
  40. 40.
    Savelsbergh, M.: A branch-and-price algorithm for the generalized assignment problem. Oper. Res. 45, 831–841 (1997) MathSciNetMATHGoogle Scholar
  41. 41.
    Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM J. Discrete Math. 3, 411–430 (1990) CrossRefMathSciNetMATHGoogle Scholar
  42. 42.
    Sherali, H.D., Adams, W.P.: A hierarchy of relaxations and convex hull characterizations for mixed-integer zero-one programming problems. Discrete Appl. Math. 52, 83–106 (1994) CrossRefMathSciNetMATHGoogle Scholar
  43. 43.
    Sherali, H.D., Adams, W.P.: A Reformulation-Linearization Technique for Solving Discrete and Continuous Non-convex Problems, 1st edn. Kluwer Academic, Norwell (1999) Google Scholar
  44. 44.
    Sofianopoulous, S.: Simulated annealing applied to the process allocation problem. Eur. J. Oper. Res. 60, 327–334 (1992) CrossRefGoogle Scholar
  45. 45.
    Sofianopoulous, S.: The process allocation problem: a survey of the application of graph-theoretic and integer programming approaches. J. Oper. Res. Soc. 43, 407–413 (1992) CrossRefGoogle Scholar
  46. 46.
    Yagiura, M., Yamaguchi, T., Ibaraki, T.: A variable depth search algorithm with branching search for the generalized assignment problem. Optim. Methods Softw. 10, 419–441 (1998) CrossRefMathSciNetMATHGoogle Scholar
  47. 47.
    Yagiura, M., Yamaguchi, T., Ibaraki, T.: A variable depth search algorithm with branching search for the generalized assignment problem. In: Martello, S., Osman, I.H., Roucairol, C. (eds.) Meta-heuristics: Advances and Trends in Local Search Paradigms for Optimization, pp. 459–471. Kluwer Academic, Boston (1999) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Peter M. Hahn
    • 1
  • Bum-Jin Kim
    • 1
  • Monique Guignard
    • 2
  • J. MacGregor Smith
    • 3
  • Yi-Rong Zhu
    • 1
  1. 1.Electrical and Systems EngineeringUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Operations and Information Management, The Wharton SchoolUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Mechanical and Industrial EngineeringUniversity of Massachusetts AmherstAmherstUSA

Personalised recommendations