Computational Optimization and Applications

, Volume 40, Issue 2, pp 143–189 | Cite as

Interior-point methods for nonconvex nonlinear programming: regularization and warmstarts



In this paper, we investigate the use of an exact primal-dual penalty approach within the framework of an interior-point method for nonconvex nonlinear programming. This approach provides regularization and relaxation, which can aid in solving ill-behaved problems and in warmstarting the algorithm. We present details of our implementation within the loqo algorithm and provide extensive numerical results on the CUTEr test set and on warmstarting in the context of quadratic, nonlinear, mixed integer nonlinear, and goal programming.


Interior-point methods Nonlinear programming Warmstarting Penalty methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anitescu, M.: Nonlinear programs with unbounded Lagrange multiplier sets. Technical Report ANL/MCS-P793-0200, Argonne National Labs Google Scholar
  2. 2.
    Benson, H.Y.: Numerical testing results for the primal-dual penalty approach.
  3. 3.
    Benson, H.Y., Shanno, D.F.: An exact primal-dual penalty method approach to warmstarting interior-point methods for linear programming. Comput. Optim. Appl. (2006, to appear) Google Scholar
  4. 4.
    Benson, H.Y., Shanno, D.F., Vanderbei, R.J.: A comparative study of large scale nonlinear optimization algorithms. In: Proceedings of the Workshop on High Performance Algorithms and Software for Nonlinear Optimization, Erice, Italy (2001) Google Scholar
  5. 5.
    Benson, H.Y., Shanno, D.F., Vanderbei, R.J.: Interior-point methods for nonconvex nonlinear programming: filter methods and merit functions. Comput. Optim. Appl. 23(2), 257–272 (2002) CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Benson, H.Y., Shanno, D.F., Vanderbei, R.J.: Interior-point methods for nonconvex nonlinear programming: jamming and comparative numerical testing. Math. Program. A 99(1), 35–48 (2004) CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Benson, H.Y., Sen, A., Shanno, D.F., Vanderbei, R.J.: Interior point algorithms, penalty methods and equilibrium problems. Comput. Optim. Appl. 34(2), 155–182 (2006) CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Bussieck, M.R., Drud, A.S., Meeraus, A.: MINLPLib—a collection of test models for mixed-integer nonlinear programming. INFORMS J. Comput. 15(1), 114–119 (2003) CrossRefMathSciNetGoogle Scholar
  9. 9.
    Fiacco, A.V., McCormick, G.P.: Nonlinear Programming: Sequential Unconstrained Minimization Techniques. Research Analysis Corporation, McLean (1968). Republished in 1990 by SIAM, Philadelphia MATHGoogle Scholar
  10. 10.
    Fletcher, R.: Practical Methods of Optimization. Wiley, Chichester (1987) MATHGoogle Scholar
  11. 11.
    Gill, P.E., Murray, W., Saunders, M.A.: User’s guide for SNOPT 5.3: a Fortran package for large-scale nonlinear programming. Technical Report, Systems Optimization Laboratory, Stanford University, Stanford, CA (1997) Google Scholar
  12. 12.
    Gould, N.I.M., Orban, D., Toint, P.L.: An interior-point l1-penalty method for nonlinear optimization. Technical Report RAL-TR-2003-022, Rutherford Appleton Laboratory Chilton, Oxfordshire, UK (November 2003) Google Scholar
  13. 13.
    Gould, N.I.M., Orban, D., Toint, P.L.: CUTEr and SifDec: a constrained and unconstrained testing environment, revisited. ACM Trans. Math. Softw. 29(4), 373–394 (2003) CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    Hock, W., Schittkowski, K.: Test Examples for Nonlinear Programming Codes. Lecture Notes in Economics and Mathematical Systems, vol. 187. Springer, Heidelberg (1981) MATHGoogle Scholar
  15. 15.
    Kuriger, G., Ravindran, A.R.: Intelligent search methods for nonlinear goal programming problems. INFOR: Inf. Syst. Oper. Res. 43(2), 79–92 (2005) MathSciNetGoogle Scholar
  16. 16.
    Leyffer, S., Lopez-Calva, G., Nocedal, J.: Interior methods for mathematical programs with complementarity constraints. Technical Report OTC 2004-10, Northwestern University, Evanston, IL (December 2004) Google Scholar
  17. 17.
    Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudorandom number generator. ACM Trans. Model. Comput. Simul. 8(1), 3–30 (1998) CrossRefMATHGoogle Scholar
  18. 18.
    Nocedal, J., Waltz, R.A.: Knitro 2.0 user’s manual. Technical Report OTC 02-2002, Optimization Technology Center, Northwestern University (January 2002) Google Scholar
  19. 19.
    Nocedal, J., Morales, J.L., Waltz, R., Liu, G., Goux, J.P.: Assessing the potential of interior-point methods for nonlinear optimization. Technical Report OTC-2001-6, Optimization Technology Center (2001) Google Scholar
  20. 20.
    Shanno, D.F., Vanderbei, R.J.: Interior-point methods for nonconvex nonlinear programming: orderings and higher-order methods. Math. Program. 87(2), 303–316 (2000) CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    Ulbrich, M., Ulbrich, S., Vicente, L.: A globally convergent primal-dual interior point filter method for nonconvex nonlinear programming. Math. Program. 100, 379–410 (2004) CrossRefMathSciNetMATHGoogle Scholar
  22. 22.
    Vanderbei, R.J.: AMPL models.
  23. 23.
    Vanderbei, R.J., Shanno, D.F.: An interior-point algorithm for nonconvex nonlinear programming. Comput. Optim. Appl. 13, 231–252 (1999) CrossRefMathSciNetMATHGoogle Scholar
  24. 24.
    Wächter, A., Biegler, L.: Failure of global convergence for a class of interior point methods for nonlinear programming. Math. Program. 88(3), 565–587 (2000) CrossRefMathSciNetMATHGoogle Scholar
  25. 25.
    Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Technical Report RC 23149, IBM T.J. Watson Research Center, Yorktown, USA (March 2004) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Drexel UniversityPhiladelphiaUSA
  2. 2.RUTCOR–Rutgers UniversityNew BrunswickUSA

Personalised recommendations