Computational Optimization and Applications

, Volume 42, Issue 2, pp 213–229 | Cite as

Kantorovich’s majorants principle for Newton’s method

  • O. P. Ferreira
  • B. F. Svaiter


We prove Kantorovich’s theorem on Newton’s method using a convergence analysis which makes clear, with respect to Newton’s method, the relationship of the majorant function and the non-linear operator under consideration. This approach enables us to drop out the assumption of existence of a second root for the majorant function, still guaranteeing Q-quadratic convergence rate and to obtain a new estimate of this rate based on a directional derivative of the derivative of the majorant function. Moreover, the majorant function does not have to be defined beyond its first root for obtaining convergence rate results.


Kantorovich’s theorem Newton’s method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Appel, J., De Pascale, E., Lysenko, J.V., Zabrejko, P.P.: New results on Newton-Kantorovich approximations with applications to nonlinear integral equations. Numer. Funct. Anal. Optim. 18(1/2), 1–17 (1997) CrossRefMathSciNetGoogle Scholar
  2. 2.
    Alvarez, F., Botle, J., Munier, J.: A unifying local convergence result for Newton’s method in Riemannian manifolds. Rapport de recherche, N. 5381, INRIA (2004) Google Scholar
  3. 3.
    Ferreira, O.P., Svaiter, B.F.: Kantorovich’s theorem on Newton’s method in Riemannian manifolds. J. Complex. 18, 304–329 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Huang, Z.: Newton method under weak Lipschitz continuous derivative in Banach spaces. Appl. Math. Comput. 140, 115–126 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Kantorovich, L.V., Akilov, G.P.: Functional Analysis in Normed Spaces. Oxford, Pergamon (1964) zbMATHGoogle Scholar
  6. 6.
    Nesterov, Y., Nemirovskii, A.: Interior-Point Polynomial Algorithms in Convex Programming. SIAM Studies in Applied Mathematics, vol. 13. SIAM, Philadelphia (1994) zbMATHGoogle Scholar
  7. 7.
    Polyak, B.T.: Newton-Kantorovich method and its global convergence. Zap. Nauchn. Semin. S.-Peterburg. Otd. Mat. Inst. Steklova (POMI) 312 (2004) Google Scholar
  8. 8.
    Potra, F.A.: The Kantorovich theorem and interior point methods. Math. Program. 102(1), 47–70 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Smale, S.: Newton method estimates from data at one point. In: Ewing, R., Gross, K., Martin, C. (eds.) The Merging of Disciplines: New Directions in Pure, Applied and Computational Mathematics, pp. 185–196. Springer, New York (1986) Google Scholar
  10. 10.
    Wang, X.: Convergence of Newton’s method and inverse function theorem in Banach space. Math. Comput. 68(225), 169–186 (1999) zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.IME/UFGCampus IIGoiâniaBrazil
  2. 2.IMPAEstrada Dona CastorinaRio de JaneiroBrazil

Personalised recommendations