Advertisement

Computational Optimization and Applications

, Volume 37, Issue 3, pp 355–369 | Cite as

Implementation of a primal–dual method for SDP on a shared memory parallel architecture

  • Brian Borchers
  • Joseph G. Young
Article

Abstract

Primal–dual interior point methods and the HKM method in particular have been implemented in a number of software packages for semidefinite programming. These methods have performed well in practice on small to medium sized SDPs. However, primal–dual codes have had some trouble in solving larger problems because of the storage requirements and required computational effort. In this paper we describe a parallel implementation of the primal–dual method on a shared memory system. Computational results are presented, including the solution of some large scale problems with over 50,000 constraints.

Keywords

Semidefinite programming Interior point methods Parallel computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, E., Bai, Z., Bischof, C., Blackford, L.S., Demmel, J., Dongarra, J.J., Du Croz, J., Hammarling, S., Greenbaum, A., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, 3rd edn. SIAM, Philadelphia (1999) Google Scholar
  2. 2.
    Benson, S.J.: Parallel computing on semidefinite programs. Technical report ANL/MCS-P939-0302, Argonne National Laboratory (2003) Google Scholar
  3. 3.
    Benson, S.J., Ye, Y.: DSDP3: Dual-scaling algorithm for semidefinite programming. Technical report ANL/MCS-P851-1000, Argonne National Laboratory (November 2001) Google Scholar
  4. 4.
    Blackford, L.S., Demmel, J., Dongarra, J., Duff, I., Hammarling, S., Henry, G., Heoux, M., Kaufman, L., Lumsdaine, A., Petitet, A., Pozo, R., Remington, K., Whaley, R.C.: An updated set of basic linear algebra subprograms (BLAS). ACM Trans. Math. Softw. 28(2), 135–151 (2002) CrossRefGoogle Scholar
  5. 5.
    Borchers, B.: CSDP, a C library for semidefinite programming. Optim. Methods Softw. 11-2(1–4), 613–623 (1999) MathSciNetGoogle Scholar
  6. 6.
    Borchers, B.: SDPLIB 1.2, a library of semidefinite programming test problems. Optim. Methods Softw. 11-2(1–4), 683–690 (1999) MathSciNetGoogle Scholar
  7. 7.
    Burer, S., Choi, C.: Computational enhancements in low-rank semidefinite programming. University of Iowa (July 2004) Google Scholar
  8. 8.
    Burer, S., Monteiro, R.D.C.: A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization. Math. Program. 95(2), 329–357 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Chandra, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J., Menon, R.: Parallel Programming in OpenMP. Morgan Kaufmann, New York (2000) Google Scholar
  10. 10.
    Czyzyk, J., Mesnier, M.P., Mor, J.J.: The NEOS server. IEEE Comput. Sci. Eng. 5(3), 68–75 (1998) CrossRefGoogle Scholar
  11. 11.
    Fujisawa, K., Kojima, M., Nakata, K.: Exploiting sparsity in primal–dual interior-point methods for semidefinite programming. Math. Program. 79, 235–253 (1997) MathSciNetGoogle Scholar
  12. 12.
    Fukuda, M., Braams, B.J., Nakata, M., Overton, M.L., Percus, J.K., Yamashita, M., Zhao, Z.: Large-scale semidefinite programs in electronic structure calculation. Technical report B-413, Tokyo Institute of Technology, Department of Mathematical and Computing Sciences (February 2005) Google Scholar
  13. 13.
    Keuchel, J., Schnorr, C., Schellewald, C., Cremers, D.: Binary partitioning, perceptual grouping, and restoration with semidefinite programming. IEEE Trans. Pattern Anal. Mach. Intell. 25(11), 1364–1379 (2003) CrossRefGoogle Scholar
  14. 14.
    Kocvara, M., Stingl, M.: Pennon: A code for convex nonlinear and semidefinite programming. Optim. Methods Softw. 18(3), 317–333 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Mittelmann, H.D.: An independent benchmarking of SDP and SOCP solvers. Math. Program. 95(2), 407–430 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Sturm, J.F.: Using sedumi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11-2(1–4), 625–653 (1999) MathSciNetGoogle Scholar
  17. 17.
    Sturm, J.F.: Implementation of interior point methods for mixed semidefinite and second order cone optimization problems. Optim. Methods Softw. 17(6), 1105–1154 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Toh, K.C., Todd, M.J., Tutuncu, R.H.: SDPT3—a MATLAB software package for semidefinite programming, version 1.3. Optim. Methods Softw. 11-2(1–4), 545–581 (1999) MathSciNetGoogle Scholar
  19. 19.
    Tutuncu, R.H., Toh, K.C., Todd, M.J.: Solving semidefinite-quadratic–linear programs using SDPT3. Math. Program. 95(2), 189–217 (2003) CrossRefMathSciNetGoogle Scholar
  20. 20.
    Yamashita, M., Fujisawa, K., Kojima, M.: Implementation and evaluation of SDPA 6.0 (semidefinite programming algorithm 6.0). Optim. Methods Softw. 18(4), 491–505 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Yamashita, M., Fujisawa, K., Kojima, M.: SDPARA: Semidefinite programming algorithm parallel version. Parallel Comput. 29, 1053–1067 (2003) CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of MathematicsNew Mexico TechSocorroUSA
  2. 2.Computational and Applied MathematicsRice UniversityHoustonUSA

Personalised recommendations