Computational Optimization and Applications

, Volume 37, Issue 3, pp 329–353 | Cite as

An interior-point affine-scaling trust-region method for semismooth equations with box constraints



An algorithm for the solution of a semismooth system of equations with box constraints is described. The method is an affine-scaling trust-region method. All iterates generated by this method are strictly feasible. In this way, possible domain violations outside or on the boundary of the box are avoided. The method is shown to have strong global and local convergence properties under suitable assumptions, in particular, when the method is used with a special scaling matrix. Numerical results are presented for a number of problems arising from different areas.


Affine scaling Trust-region method Nonlinear equations Box constraints Semismooth functions Newton’s method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allgower, E.L., Georg, K.: Introduction to Numerical Continuation Methods. Wiley, New York (1979) Google Scholar
  2. 2.
    Bellavia, S., Macconi, M., Morini, B.: An affine scaling trust-region approach to bound-constrained nonlinear systems. Appl. Numer. Math. 44, 257–280 (2003) CrossRefMathSciNetGoogle Scholar
  3. 3.
    Bellavia, S., Macconi, M., Morini, B.: STRSCNE: a scaled trust-region solver for constrained nonlinear systems. Comput. Optim. Appl. 28, 31–50 (2004) CrossRefMathSciNetGoogle Scholar
  4. 4.
    Bellavia, S., Macconi, M., Morini, B.: A two-dimensional trust-region method for large scale bound-constrained nonlinear systems. Technical report, submitted for publication Google Scholar
  5. 5.
    Bellavia, S., Morini, B.: An interior global method for nonlinear systems with simple bounds. Optim. Methods Softw. 20, 453–474 (2005) CrossRefMathSciNetGoogle Scholar
  6. 6.
    Bertsekas, D.P.: Projected Newton methods for optimization problems with simple constraints. SIAM J. Control Optim. 20, 221–246 (1982) CrossRefMathSciNetGoogle Scholar
  7. 7.
    Byrd, R.H., Lu, P., Nocedal, J.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Stat. Comput. 16, 1190–1208 (1995) CrossRefMathSciNetGoogle Scholar
  8. 8.
    Chen, B., Chen, X., Kanzow, C.: A penalized Fischer–Burmeister NCP-function. Math. Program. 88, 211–216 (2000) CrossRefMathSciNetGoogle Scholar
  9. 9.
    Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983) MATHGoogle Scholar
  10. 10.
    Coleman, T.F., Li, Y.: On the convergence of interior reflective Newton methods for nonlinear minimization subject to bounds. Math. Program. 67, 189–224 (1994) CrossRefMathSciNetGoogle Scholar
  11. 11.
    Coleman, T.F., Li, Y.: An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6, 418–445 (1996) Google Scholar
  12. 12.
    Conn, A.R., Gould, N.I.M., Toint, P.L.: Global convergence of a class of trust region algorithms for optimization with simple bounds. SIAM J. Numer. Anal. 25, 433–460 (1998) (Correction in SIAM J. Numer. Anal. 26, 764–767 (1989)) MathSciNetGoogle Scholar
  13. 13.
    Conn, A.R., Gould, N.I.M., Toint, Ph.L.: Testing a class of methods for solving minimization problems with simple bounds on the variables. Math. Comput. 50, 399–430 (1988) MathSciNetGoogle Scholar
  14. 14.
    Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-Region Methods. MPS/SIAM Series on Optimization. SIAM, Philadelphia (2000) MATHGoogle Scholar
  15. 15.
    De Luca, T., Facchinei, F., Kanzow, C.: A semismooth equation approach to the solution of nonlinear complementarity problems. Math. Program. 75, 407–439 (1996) CrossRefGoogle Scholar
  16. 16.
    Dembo, R.S., Eisenstat, S.C., Steihaug, T.: Inexact Newton methods. SIAM J. Numer. Anal. 19, 400–408 (1982) CrossRefMathSciNetGoogle Scholar
  17. 17.
    Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs (1983) MATHGoogle Scholar
  18. 18.
    Dennis, J.E., Vicente, L.N.: Trust-region interior-point algorithms for minimization problems with simple bounds. In: Fischer, H., Riedmüller, B., Schäffler, S. (eds.) Applied Mathematics and Parallel Computing. Festschrift for Klaus Ritter, pp. 97–107. Physica, Heidelberg (1996) Google Scholar
  19. 19.
    Deuflhard, P.: Newton Methods for Nonlinear Problems. Springer, Berlin/Heidelberg (2004) MATHGoogle Scholar
  20. 20.
    Dirkse, S.P., Ferris, M.C.: MCPLIB: A collection of nonlinear mixed complementarity problems. Optim. Methods Softw. 5, 319–345 (1995) Google Scholar
  21. 21.
    Facchinei, F., Fischer, A., Kanzow, C.: Inexact Newton methods for semismooth equations with applications to variational inequality problems. In: Di Pillo, G., Giannessi, F. (eds.) Nonlinear Optimization and Applications, pp. 125–139. Plenum, New York (1996) Google Scholar
  22. 22.
    Facchinei, F., Júdice, J., Soares, J.: An active set Newton algorithm for large-scale nonlinear programs with box constraints. SIAM J. Optim. 8, 158–186 (1998) Google Scholar
  23. 23.
    Facchinei, F., Lucidi, S., Palagi, L.: A truncated Newton algorithm for large scale box constrained optimization. SIAM J. Optim. 12, 1100–1125 (2002) CrossRefMathSciNetGoogle Scholar
  24. 24.
    Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. II. Springer, New York (2003) MATHGoogle Scholar
  25. 25.
    Facchinei, F., Soares, J.: A new merit function for nonlinear complementarity problems and a related algorithm. SIAM J. Optim. 7, 225–247 (1997) CrossRefMathSciNetGoogle Scholar
  26. 26.
    Ferris, M.C., Pang, J.-S.: Engineering and economic applications of complementarity problems. SIAM Rev. 39, 669–713 (1997) CrossRefMathSciNetGoogle Scholar
  27. 27.
    Floudas, C.A., et al.: Handbook of Test Problems in Local and Global Optimization. Kluwer Academic, Dordrecht (1999) MATHGoogle Scholar
  28. 28.
    Friedlander, A., Martínez, J.M., Santos, S.A.: A new trust region algorithm for bound constrained minimization. Appl. Math. Optim. 30, 235–266 (1994) CrossRefGoogle Scholar
  29. 29.
    Heinkenschloss, M., Ulbrich, M., Ulbrich, S.: Superlinear and quadratic convergence of affine-scaling interior-point Newton methods for problems with simple bounds without strict complementarity assumption. Math. Program. 86, 615–635 (1999) CrossRefMathSciNetGoogle Scholar
  30. 30.
    Kanzow, C.: Strictly feasible equation-based methods for mixed complementarity problems. Numer. Math. 89, 135–160 (2001) CrossRefMathSciNetGoogle Scholar
  31. 31.
    Kanzow, C.: An active set-type Newton method for constrained nonlinear systems. In: Ferris, M.C., Mangasarian, O.L., Pang, J.-S. (eds.) Complementarity: Applications, Algorithms and Extensions, pp. 179–200. Kluwer Academic, Dordrecht (2001) Google Scholar
  32. 32.
    Kanzow, C., Klug, A.: On affine-scaling interior-point Newton methods for nonlinear minimization with bound constraints. Comput. Optim. Appl. 35, 177–197 (2006) CrossRefMathSciNetGoogle Scholar
  33. 33.
    Kelley, C.T.: Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadelphia (1995) MATHGoogle Scholar
  34. 34.
    Kelley, C.T.: Solving Nonlinear Equations with Newton’s Method. SIAM, Philadelphia (2003) MATHGoogle Scholar
  35. 35.
    Kozakevich, D.N., Martínez, J.M., Santos, S.A.: Solving nonlinear systems of equations with simple constraints. Comput. Appl. Math. 16, 215–235 (1997) Google Scholar
  36. 36.
    Lescrenier, M.: Convergence of trust region algorithms for optimization with bounds when strict complementarity does not hold. SIAM J. Numer. Anal. 28, 476–495 (1991) CrossRefMathSciNetGoogle Scholar
  37. 37.
    Lewis, R.M., Torczon, V.: Pattern search algorithms for bound constrained minimization. SIAM J. Optim. 9, 1082–1099 (1999) CrossRefMathSciNetGoogle Scholar
  38. 38.
    Lin, C.-J., Moré, J.J.: Newton’s method for large bound-constrained optimization problems. SIAM J. Optim. 9, 1100–1127 (1999) CrossRefGoogle Scholar
  39. 39.
    Lukšan, L.: Inexact trust region method for large sparse systems of nonlinear equations. J. Optim. Theory Appl. 81, 569–590 (1994) Google Scholar
  40. 40.
    Martínez, J.M., Qi, L.: Inexact Newton methods for solving nonsmooth equations. J. Comput. Appl. Math. 60, 127–145 (1995) Google Scholar
  41. 41.
    Meintjes, K., Morgan, A.P.: Chemical equilibrium systems as numerical test problems. ACM Trans. Math. Softw. 16, 143–151 (1990) CrossRefGoogle Scholar
  42. 42.
    Moré, J.J., Cosnard, M.Y.: Numerical solution of nonlinear equations. ACM Trans. Math. Softw. 5, 64–85 (1979) CrossRefGoogle Scholar
  43. 43.
    Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic, New York/London (1970) MATHGoogle Scholar
  44. 44.
    Pang, J.-S., Qi, L.: Nonsmooth equations: motivation and algorithms. SIAM J. Optim. 3, 443–465 (1993) CrossRefMathSciNetGoogle Scholar
  45. 45.
    Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18, 227–244 (1993) CrossRefGoogle Scholar
  46. 46.
    Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–367 (1993) CrossRefMathSciNetGoogle Scholar
  47. 47.
    Qi, L., Tong, X., Li, D.: Active-set projected trust region algorithm for box constrained nonsmooth equations. J. Optim. Theory Appl. 120, 601–625 (2004) CrossRefMathSciNetGoogle Scholar
  48. 48.
    Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003) MATHGoogle Scholar
  49. 49.
    Schwartz, A., Polak, E.: Family of projected descent methods for optimization problems with simple bounds. J. Optim. Theory Appl. 92, 1–31 (1997) CrossRefMathSciNetGoogle Scholar
  50. 50.
    Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, 2nd edn. Springer, New York (1993) MATHGoogle Scholar
  51. 51.
    Tong, X.J., Qi, L.: On the convergence of a trust-region method for solving constrained nonlinear equations with degenerate solutions. J. Optim. Theory Appl. 123, 187–211 (2004) CrossRefMathSciNetGoogle Scholar
  52. 52.
    Ulbrich, M.: Non-monotone trust-region methods for bound-constrained semismooth equations with applications to nonlinear mixed complementarity problems. SIAM J. Optim. 11, 889–917 (2001) CrossRefMathSciNetGoogle Scholar
  53. 53.
    Ulbrich, M., Ulbrich, S.: Superlinear convergence of affine-scaling interior-point Newton methods for infinite-dimensional nonlinear problems with pointwise bounds. SIAM J. Control Optim. 38, 1938–1984 (2000) CrossRefMathSciNetGoogle Scholar
  54. 54.
    Ulbrich, M., Ulbrich, S., Heinkenschloss, M.: Global convergence of trust-region interior-point algorithms for infinite-dimensional nonconvex minimization subject to pointwise bounds. SIAM J. Control Optim. 37, 731–764 (1999) CrossRefMathSciNetGoogle Scholar
  55. 55.
    Zhu, C., Byrd, R.H., Nocedal, J.: Algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization. ACM Trans. Math. Softw. 23, 550–560 (1997) CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of WürzburgWürzburgGermany

Personalised recommendations