Computational Optimization and Applications

, Volume 37, Issue 3, pp 329–353

# An interior-point affine-scaling trust-region method for semismooth equations with box constraints

Article

## Abstract

An algorithm for the solution of a semismooth system of equations with box constraints is described. The method is an affine-scaling trust-region method. All iterates generated by this method are strictly feasible. In this way, possible domain violations outside or on the boundary of the box are avoided. The method is shown to have strong global and local convergence properties under suitable assumptions, in particular, when the method is used with a special scaling matrix. Numerical results are presented for a number of problems arising from different areas.

### Keywords

Affine scaling Trust-region method Nonlinear equations Box constraints Semismooth functions Newton’s method

## Preview

### References

1. 1.
Allgower, E.L., Georg, K.: Introduction to Numerical Continuation Methods. Wiley, New York (1979) Google Scholar
2. 2.
Bellavia, S., Macconi, M., Morini, B.: An affine scaling trust-region approach to bound-constrained nonlinear systems. Appl. Numer. Math. 44, 257–280 (2003)
3. 3.
Bellavia, S., Macconi, M., Morini, B.: STRSCNE: a scaled trust-region solver for constrained nonlinear systems. Comput. Optim. Appl. 28, 31–50 (2004)
4. 4.
Bellavia, S., Macconi, M., Morini, B.: A two-dimensional trust-region method for large scale bound-constrained nonlinear systems. Technical report, submitted for publication Google Scholar
5. 5.
Bellavia, S., Morini, B.: An interior global method for nonlinear systems with simple bounds. Optim. Methods Softw. 20, 453–474 (2005)
6. 6.
Bertsekas, D.P.: Projected Newton methods for optimization problems with simple constraints. SIAM J. Control Optim. 20, 221–246 (1982)
7. 7.
Byrd, R.H., Lu, P., Nocedal, J.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Stat. Comput. 16, 1190–1208 (1995)
8. 8.
Chen, B., Chen, X., Kanzow, C.: A penalized Fischer–Burmeister NCP-function. Math. Program. 88, 211–216 (2000)
9. 9.
Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)
10. 10.
Coleman, T.F., Li, Y.: On the convergence of interior reflective Newton methods for nonlinear minimization subject to bounds. Math. Program. 67, 189–224 (1994)
11. 11.
Coleman, T.F., Li, Y.: An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6, 418–445 (1996) Google Scholar
12. 12.
Conn, A.R., Gould, N.I.M., Toint, P.L.: Global convergence of a class of trust region algorithms for optimization with simple bounds. SIAM J. Numer. Anal. 25, 433–460 (1998) (Correction in SIAM J. Numer. Anal. 26, 764–767 (1989))
13. 13.
Conn, A.R., Gould, N.I.M., Toint, Ph.L.: Testing a class of methods for solving minimization problems with simple bounds on the variables. Math. Comput. 50, 399–430 (1988)
14. 14.
Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-Region Methods. MPS/SIAM Series on Optimization. SIAM, Philadelphia (2000)
15. 15.
De Luca, T., Facchinei, F., Kanzow, C.: A semismooth equation approach to the solution of nonlinear complementarity problems. Math. Program. 75, 407–439 (1996)
16. 16.
Dembo, R.S., Eisenstat, S.C., Steihaug, T.: Inexact Newton methods. SIAM J. Numer. Anal. 19, 400–408 (1982)
17. 17.
Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs (1983)
18. 18.
Dennis, J.E., Vicente, L.N.: Trust-region interior-point algorithms for minimization problems with simple bounds. In: Fischer, H., Riedmüller, B., Schäffler, S. (eds.) Applied Mathematics and Parallel Computing. Festschrift for Klaus Ritter, pp. 97–107. Physica, Heidelberg (1996) Google Scholar
19. 19.
Deuflhard, P.: Newton Methods for Nonlinear Problems. Springer, Berlin/Heidelberg (2004)
20. 20.
Dirkse, S.P., Ferris, M.C.: MCPLIB: A collection of nonlinear mixed complementarity problems. Optim. Methods Softw. 5, 319–345 (1995) Google Scholar
21. 21.
Facchinei, F., Fischer, A., Kanzow, C.: Inexact Newton methods for semismooth equations with applications to variational inequality problems. In: Di Pillo, G., Giannessi, F. (eds.) Nonlinear Optimization and Applications, pp. 125–139. Plenum, New York (1996) Google Scholar
22. 22.
Facchinei, F., Júdice, J., Soares, J.: An active set Newton algorithm for large-scale nonlinear programs with box constraints. SIAM J. Optim. 8, 158–186 (1998) Google Scholar
23. 23.
Facchinei, F., Lucidi, S., Palagi, L.: A truncated Newton algorithm for large scale box constrained optimization. SIAM J. Optim. 12, 1100–1125 (2002)
24. 24.
Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. II. Springer, New York (2003)
25. 25.
Facchinei, F., Soares, J.: A new merit function for nonlinear complementarity problems and a related algorithm. SIAM J. Optim. 7, 225–247 (1997)
26. 26.
Ferris, M.C., Pang, J.-S.: Engineering and economic applications of complementarity problems. SIAM Rev. 39, 669–713 (1997)
27. 27.
Floudas, C.A., et al.: Handbook of Test Problems in Local and Global Optimization. Kluwer Academic, Dordrecht (1999)
28. 28.
Friedlander, A., Martínez, J.M., Santos, S.A.: A new trust region algorithm for bound constrained minimization. Appl. Math. Optim. 30, 235–266 (1994)
29. 29.
Heinkenschloss, M., Ulbrich, M., Ulbrich, S.: Superlinear and quadratic convergence of affine-scaling interior-point Newton methods for problems with simple bounds without strict complementarity assumption. Math. Program. 86, 615–635 (1999)
30. 30.
Kanzow, C.: Strictly feasible equation-based methods for mixed complementarity problems. Numer. Math. 89, 135–160 (2001)
31. 31.
Kanzow, C.: An active set-type Newton method for constrained nonlinear systems. In: Ferris, M.C., Mangasarian, O.L., Pang, J.-S. (eds.) Complementarity: Applications, Algorithms and Extensions, pp. 179–200. Kluwer Academic, Dordrecht (2001) Google Scholar
32. 32.
Kanzow, C., Klug, A.: On affine-scaling interior-point Newton methods for nonlinear minimization with bound constraints. Comput. Optim. Appl. 35, 177–197 (2006)
33. 33.
Kelley, C.T.: Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadelphia (1995)
34. 34.
Kelley, C.T.: Solving Nonlinear Equations with Newton’s Method. SIAM, Philadelphia (2003)
35. 35.
Kozakevich, D.N., Martínez, J.M., Santos, S.A.: Solving nonlinear systems of equations with simple constraints. Comput. Appl. Math. 16, 215–235 (1997) Google Scholar
36. 36.
Lescrenier, M.: Convergence of trust region algorithms for optimization with bounds when strict complementarity does not hold. SIAM J. Numer. Anal. 28, 476–495 (1991)
37. 37.
Lewis, R.M., Torczon, V.: Pattern search algorithms for bound constrained minimization. SIAM J. Optim. 9, 1082–1099 (1999)
38. 38.
Lin, C.-J., Moré, J.J.: Newton’s method for large bound-constrained optimization problems. SIAM J. Optim. 9, 1100–1127 (1999)
39. 39.
Lukšan, L.: Inexact trust region method for large sparse systems of nonlinear equations. J. Optim. Theory Appl. 81, 569–590 (1994) Google Scholar
40. 40.
Martínez, J.M., Qi, L.: Inexact Newton methods for solving nonsmooth equations. J. Comput. Appl. Math. 60, 127–145 (1995) Google Scholar
41. 41.
Meintjes, K., Morgan, A.P.: Chemical equilibrium systems as numerical test problems. ACM Trans. Math. Softw. 16, 143–151 (1990)
42. 42.
Moré, J.J., Cosnard, M.Y.: Numerical solution of nonlinear equations. ACM Trans. Math. Softw. 5, 64–85 (1979)
43. 43.
Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic, New York/London (1970)
44. 44.
Pang, J.-S., Qi, L.: Nonsmooth equations: motivation and algorithms. SIAM J. Optim. 3, 443–465 (1993)
45. 45.
Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18, 227–244 (1993)
46. 46.
Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–367 (1993)
47. 47.
Qi, L., Tong, X., Li, D.: Active-set projected trust region algorithm for box constrained nonsmooth equations. J. Optim. Theory Appl. 120, 601–625 (2004)
48. 48.
Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)
49. 49.
Schwartz, A., Polak, E.: Family of projected descent methods for optimization problems with simple bounds. J. Optim. Theory Appl. 92, 1–31 (1997)
50. 50.
Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, 2nd edn. Springer, New York (1993)
51. 51.
Tong, X.J., Qi, L.: On the convergence of a trust-region method for solving constrained nonlinear equations with degenerate solutions. J. Optim. Theory Appl. 123, 187–211 (2004)
52. 52.
Ulbrich, M.: Non-monotone trust-region methods for bound-constrained semismooth equations with applications to nonlinear mixed complementarity problems. SIAM J. Optim. 11, 889–917 (2001)
53. 53.
Ulbrich, M., Ulbrich, S.: Superlinear convergence of affine-scaling interior-point Newton methods for infinite-dimensional nonlinear problems with pointwise bounds. SIAM J. Control Optim. 38, 1938–1984 (2000)
54. 54.
Ulbrich, M., Ulbrich, S., Heinkenschloss, M.: Global convergence of trust-region interior-point algorithms for infinite-dimensional nonconvex minimization subject to pointwise bounds. SIAM J. Control Optim. 37, 731–764 (1999)
55. 55.
Zhu, C., Byrd, R.H., Nocedal, J.: Algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization. ACM Trans. Math. Softw. 23, 550–560 (1997)