Advertisement

Computational Optimization and Applications

, Volume 35, Issue 2, pp 239–260 | Cite as

Solving the p-Median Problem with a Semi-Lagrangian Relaxation

  • C. Beltran
  • C. Tadonki
  • J. Ph. Vial
Article

Abstract

Lagrangian relaxation is commonly used in combinatorial optimization to generate lower bounds for a minimization problem. We study a modified Lagrangian relaxation which generates an optimal integer solution. We call it semi-Lagrangian relaxation and illustrate its practical value by solving large-scale instances of the p-median problem.

Keywords

Lagrangian relaxation combinatorial optimization p-median problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Avella and A. Sassano, “On the p-median polytope,” Mathematical Programming, vol. 89, pp. 395–411, 2001.zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    P. Avella, A. Sassano, and I. Vasil’ev, “Computational study of large-scale p-median problems,” Technical Report, Dipartimento Di Informatica e Sistemistica, Università di Roma “La Sapienza,” 2003.Google Scholar
  3. 3.
    O. Briant and D. Naddef, “The optimal diversity management problem,” Operations Research, vol. 52, no. 4, 2004.Google Scholar
  4. 4.
    Christofides, Graph Theory: An Algorithmic Approach. Academic Press, New York, 1975.Google Scholar
  5. 5.
    I.R.J. de Farias, “A family of facets for the uncapacitated p-median polytope,” Operations Research Letters, vol. 28, pp. 161–167, 2001.zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    O. du Merle and J.-P. Vial, “Proximal-ACCPM, a cutting plane method for column generation and lagrangian relaxation: Application to the p-median problem,” Technical Report, Logilab, HEC, University of Geneva, 2002.Google Scholar
  7. 7.
    H. Everett III, “Generalized lagrange multiplier method for solving problems of optimum allocation of resources,” Operations Research, vol. 11, no. 3, pp. 399–471, 1963.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    A.M. Geoffrion, “Lagrangean relaxation for integer programming,” Mathematical Programming Study, vol. 2, pp. 82–114, 1974.zbMATHMathSciNetGoogle Scholar
  9. 9.
    J.L. Goffin, A. Haurie, and J.P. Vial, “Decomposition and nondifferentiable optimization with the projective algorithm,” Management Science, vol. 37, pp. 284–302, 1992.CrossRefGoogle Scholar
  10. 10.
    J.-L. Goffin and J. Vial, “Convex nondifferentiable optimization: A survey focussed on the analytic center cutting plane method,” Technical Report 99.02, Geneva University—HEC—Logilab, 1999.Google Scholar
  11. 11.
    M. Guignard and S. Kim, “Lagrangean decomposition: A model yielding stronger Lagrangean bounds,” Mathematical Programming, vol. 39, pp. 215–228, 1987.zbMATHMathSciNetGoogle Scholar
  12. 12.
    P. Hansen and B. Jaumard, “Cluster analysis and mathematical programming,” Mathematical Programming, vol. 79, pp. 191–215, 1997.zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    P. Hansen, N. Mladenovic, and D. Perez-Brito, “Variable neighborhood decomposition search,” Journal of Heuristics, vol. 7, pp. 335–350, 2001.zbMATHCrossRefGoogle Scholar
  14. 14.
    D.J. Higham and N.J. Higham, MATLAB Guide, SIAM, Philadelphia, Pennsilvania, USA, 2000.Google Scholar
  15. 15.
    J.B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms, volume I and II. Springer-Verlag, Berlin, 1996.Google Scholar
  16. 16.
    E. Johnson, “Mathematical programming,” Chapter cyclic groups, cutting planes and shortest path, Academic press, pp. 185–211, 1973.Google Scholar
  17. 17.
    O. Kariv and L. Hakimi, “An algorithmic approach to network location problems. ii: The p-medians,” SIAM Journal of Applied Mathematics, vol. 37, no. 3, pp. 539–560, 1979.zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    J.E. Kelley, “The cutting-plane method for solving convex programs,” Journal of the SIAM, vol. 8, pp. 703–712, 1960.MathSciNetGoogle Scholar
  19. 19.
    D. Klabjan, “A new subadditive approach to integer programming,” in W. Cook and A.S. Schulz, (eds.), Integer Programming and Combinatorial Optimization, 9th International IPCO Conference, Cambridge, MA, USA, May 27–29, 2002, Proceedings, volume 2337 of Lecture Notes in Computer Science. Springer, 2002.Google Scholar
  20. 20.
    D. Klabjan, “A practical algorithm for computing a subadditive dual function for set partitioning,” Computational Optimization and Applications, vol. 29, pp. 347–368, 2004.zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    C. Lemaréchal and A. Renaud, “A geometric study of duality gaps, with applications,” Mathematical Programming, Ser. A, vol. 90, pp. 399–427, 2001.zbMATHCrossRefGoogle Scholar
  22. 22.
    J.M. Mulvey and H.P. Crowder, “Cluster analysis: An application of lagrangian relaxation,” Management Science, vol. 25, pp. 329–340, 1979.zbMATHGoogle Scholar
  23. 23.
    D.R. Musicant, “Matlab/cplex mex-files,” 2000. http://www.cs.wisc.edu/∼musicant/data/cplex/.
  24. 24.
    G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimization, John Wiley and Sons, 1988.Google Scholar
  25. 25.
  26. 26.
    C. Tadonki, “Using cplex with matlab,” 2003. http://www.omegacomputer.com/staff/tadonki/using_cplex_with_matlab.htm.

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  1. 1.Logilab, HECUniversity of GenevaSwitzerland
  2. 2.Centre Universitaire InformatiqueUniversity of GenevaSwitzerland

Personalised recommendations