Optimal Control of PDEs with Regularized Pointwise State Constraints

  • Christian Meyer
  • Arnd Rösch
  • Fredi Tröltzsch
Article

Abstract

This paper addresses the regularization of pointwise state constraints in optimal control problems. By analyzing the associated dual problem, it is shown that the regularized problems admit Lagrange multipliers in L2-spaces. Under a certain boundedness assumption, the solution of the regularized problem converges to the one of the original state constrained problem. The results of our analysis are confirmed by numerical tests.

Keywords

quadratic programming regular Lagrange multipliers optimal control elliptic and parabolic equations pointwise state constraints bottleneck constraints 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Arada and J.-P. Raymond, “Optimal control problems with mixed control-state constraints,” SIAM J. Control and Optimization, vol. 39, pp. 1391–1407, 2000.MathSciNetGoogle Scholar
  2. 2.
    M. Bergounioux, K. Ito, and K. Kunisch, “Primal-dual strategy for constrained optimal control problem,” SIAM J. Control and Optimization, vol. 37, pp. 1176–1194, 1999.MathSciNetGoogle Scholar
  3. 3.
    M. Bergounioux and K. Kunisch, “Primal-dual strategy for state-constrained optimal control problems,” Computational Optimization and Applications, vol. 22, pp. 193–224, 2002.CrossRefMathSciNetGoogle Scholar
  4. 4.
    M. Bergounioux and F. Tröltzsch, “Optimal control of linear bottleneck problems,” ESAIM, Control, Optimisation and Calculus of Variations, vol. 3, pp. 235–250,1998.Google Scholar
  5. 5.
    M. Bergounioux and F. Tröltzsch, “Optimal control of semilinear parabolic equations with state-constraints of bottleneck type,” ESAIM, Control, Optimisation and Calculus of Variations, vol. 4, pp. 595–608, 1999.MathSciNetGoogle Scholar
  6. 6.
    E. Casas, “Boundary control of semilinear elliptic equations with pointwise state constraints,” SIAM J. Control and Optimization, vol. 31, pp. 993–1006, 1993.CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    E. Casas, J.P. Raymond, and H. Zidani, “Pontryagin's principle for local solutions of control problems with mixed control-state contraints,” SIAM J. Control and Optimization, vol. 39, pp. 1182–1203, 2000.CrossRefMathSciNetGoogle Scholar
  8. 8.
    K. Kunisch and A. Rösch, “Primal-dual active set strategy for a general class of constrained optimal control problems,” SIAM J. Optimization, vol. 13, pp. 321–334, 2002.CrossRefGoogle Scholar
  9. 9.
    J.P. Raymond, “Nonlinear boundary control of semilinear parabolic problems with pointwise state constraints,” Discrete Contin. Dyn. Syst., vol. 3, pp. 341–370, 1997.MATHMathSciNetGoogle Scholar
  10. 10.
    F. Tröltzsch, “Regular Lagrange multipliers for control problems with mixed pointwise control-state constraints,” SIAM J. Optimization, to appear.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Christian Meyer
    • 1
  • Arnd Rösch
    • 1
  • Fredi Tröltzsch
    • 1
  1. 1.Institut für Mathematik, TechnischeUniversität BerlinBerlinGermany

Personalised recommendations