Technological endowments in entrepreneurial partnerships



This paper discusses a novel argument to interpret the importance of thinking of collaborative partnerships in pre-competitive agreements. To do so, we adopt a dynamic iterative process to model technology diffusion between the partners of an agreement. We find that the success of an agreement of a given length hinges around identifying the suitable efficient combinations of the initial technological endowments of partners. As the time horizon of the agreement expands, the probability of identifying a suitable partner decreases, thus justifying the prevalence of short-horizon R&D agreements.


Cantor set Technology diffusion Logistic function Discrete time 



We are grateful to R. Devaney, X. Jarque, D. Pérez-Castrillo, J. Sandonís, two anonymous referees, and participants at several conferences and seminars for their useful suggestions and discussions. We gratefully acknowledge the financial support from research projects 2009SGR-169, ECO2009-7616, and Consolider-Ingenio 2010 (Xavier Martinez-Giralt), 2009SGR-00600 and SEJ2008-01850/ECON (Rosella Nicolini). Xavier Martinez-Giralt is a research fellow of MOVE (Markets, Organizations and Votes in Economics). The usual disclaimer applies.


  1. Aghion Ph, Dewatripont M, Rey P (2002) On partial contracting. Eur Econ Rev 46:745–753 CrossRefGoogle Scholar
  2. Baptista R (1999) The diffusion of process innovations: a selective review. Int. J. Econ. Bus. 6:107–129 CrossRefGoogle Scholar
  3. Blackmore D, Rahman A, Shah J (2009) Discrete modeling and analysis of the R-S flip-flop circuit. Chaos Solitons Fractals 42:951–963 CrossRefGoogle Scholar
  4. Canepa A, Stoneman P (2004) Comparative international diffusion: patterns, determinants and policies. Econ. Innov. New Technol. 13:279–298 CrossRefGoogle Scholar
  5. Chesbrough HW (2003) The era of open innovation. MIT Sloan Manag Rev 44:35–41 Google Scholar
  6. Chipman JS (1970) External economies of scale and competitive equilibrium. Q J Econ 84:347–385 CrossRefGoogle Scholar
  7. De Palma A, Droesbeke JJ, Lefevre C (1991) Modèles de diffusion en marketing. Presse Universitaire de France, Paris Google Scholar
  8. Devaney RL (1985) An introduction to the chaotic dynamical systems. Benjamin/Cummings, Menlo Park Google Scholar
  9. Frankort H, Hagedoorn J, Letterie W (2012) R&D partnership portfolios and the inflow of technological knowledge. Ind Corp Change 21:507–537 CrossRefGoogle Scholar
  10. Gillier Th, Kazakci AO, Piat G (2012) The generation of common purpose in innovation partnerships. Eur J Innov Manag 15:372–392 CrossRefGoogle Scholar
  11. Hagedoorn J (2002) Inter-firm R&D partnership: an overview of major trends and patterns since 1960. Res Policy 31:477–492 CrossRefGoogle Scholar
  12. Harrigan KR (1986) Managing for joint venture success. Lexington Books, Lexington Google Scholar
  13. Jayaraman V, Bhatti MI, Saber H (2004) Towards an optimal testing of an hypothesis based on dynamic technology transfer model. Appl Math Comput 147:115–129 CrossRefGoogle Scholar
  14. Karshenas M, Stoneman P (1993) Rank, stock, order and epidemic effects in the diffusion of new process technology. Rand J Econ 24:503–519 CrossRefGoogle Scholar
  15. Kraft RL (1999) Chaos, Cantor sets and hyperbolicity for the logistic maps. Am Math Mon 105:400–409 CrossRefGoogle Scholar
  16. Li T-Y, Yorke J (1975) Period three implies chaos. Am Math Mon 82:985–992 CrossRefGoogle Scholar
  17. Lokshin B, Hagerdoorn J, Letterie W (2011) The bumpy road of technology partnership: understanding causes and consequences of partnership mal-functioning. Res Policy 40:297–308 CrossRefGoogle Scholar
  18. Mansfield E (1961) Technical change and the rate of imitation. Econometrica 29:741–766 CrossRefGoogle Scholar
  19. May RM (1976) Simple mathematical models with very complicated dynamics. Nature 261:459–467 CrossRefGoogle Scholar
  20. Narula R, Hagedoorn J (1999) Innovating through strategic alliances: moving towards international partnership and contractual agreements. Technovation 19:283–294 CrossRefGoogle Scholar
  21. Nicolini R, Artige L (2008) Investigación y Desarrollo más Innovación: Recomendaciones para políticas públicas más cercanas a las necesidades de las empresas. CES Edition, Madrid Google Scholar
  22. Pérez-Castrillo D, Sandonís J (1996) Disclosure of know-how in research joint ventures. Int J Ind Organ 15:51–75 CrossRefGoogle Scholar
  23. Roijakkers N, Hagedoorn J (2006) Inter-firm R&D partnering in pharmaceutical biotechnology since 1975: trends, patterns and networks. Res Policy 35:431–446 CrossRefGoogle Scholar
  24. Segrestin B (2005) Partnering to explore: the Renault-Nissan Alliance as a forerunner of new cooperative patterns. Res Policy 35:657–672 CrossRefGoogle Scholar
  25. Singh N, Vives X (1984) Price and quantity competition in a differentiated duopoly. Rand J Econ 15:546–554 CrossRefGoogle Scholar
  26. Stoneman P (1981) Intrafirm diffusion, Bayesian learning and profitability. Econ J 91:375–388 CrossRefGoogle Scholar
  27. UNCTAD (2005) World investment report 2005: Transnational corporation and internationalization of R&D, Geneva Google Scholar
  28. Veugelers R, Kesteloot K (1994) On the design of stable joint ventures. Eur Econ Rev 38:1799–1815 CrossRefGoogle Scholar
  29. Vives X (1999) Oligopoly pricing. Old ideas and new tools. The MIT Press, Cambridge Google Scholar
  30. Zeller Ch (2004) North Atlantic innovative relations of Swiss pharmaceuticals and the proximities with regional biotech arenas. Econ. Geogr. 80:83–111 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.CODE and Departament d’EconomiaUniversitat Autònoma de BarcelonaBellaterraSpain
  2. 2.Dept. d’Economia AplicadaUniversitat Autònoma de BarcelonaBellaterraSpain

Personalised recommendations