Context in social simulation: why it can’t be wished away

  • Bruce Edmonds
SI: Epistemological Perspectives Simulation


Context is everywhere in the human social and cognitive spheres but it is often implicit and unnoticed. However, when one is involved in trying to understand and model the social and cognitive realms context becomes an important factor. This paper is an analysis of the role and effects of context on social simulation and a call for it to be squarely faced by the social simulation community. It briefly looks at some different kinds of context, and discussed the difficulty of talking about context, before looking at the “context heuristic” that seems to be used in human cognition. This allows for rich and fuzzy context recognition to be combined with crisp ‘foreground’ belief update and reasoning. Such a heuristic allows for causality to make sense, and limits the phenomena of causal spread—it is thus at the root of the modelling enterprise. This analysis is then applied to simulation modelling, considering the context of a simulation, and its ramifications, in particular, why generalisation is so hard.


Context Simulation Generalisation Philosophy Simplicity Causality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrighetto G, Campennì M, Conte R, Cecconi F (2008) Conformity in multiple contexts: imitation vs norm recognition. In: World congress on social simulation 2008 (WCSS-08), George Mason University, Fairfax, USA Google Scholar
  2. Barwise J, Perry J (1983) Situations and attitudes. MIT Press, Cambridge Google Scholar
  3. Chattoe E (1998) Just how (un)realistic are evolutionary algorithms as representations of social processes? J Artif Soc Soc Simul 1(3):2. Google Scholar
  4. Coser LA (1977) The sociology of Max Weber. Vintage Books, New York Google Scholar
  5. Deacon TW (1998) Symbolic species: the co-evolution of language and the brain. Norton, New York Google Scholar
  6. Edmonds B (1999a) The pragmatic roots of context. In: CONTEXT’99, Trento, Italy, September 1999. Lecture notes in artificial intelligence, vol 1688, pp 119–132 Google Scholar
  7. Edmonds B (1999b) Capturing social embeddedness: a constructivist approach. Adapt Behav 7:323–348 CrossRefGoogle Scholar
  8. Edmonds B (2002) Learning and exploiting context in agents. In: Proceedings of the 1st international joint conference on autonomous agents and multiagent systems (AAMAS), Bologna, Italy, July 2002. ACM, New York, pp 1231–1238 CrossRefGoogle Scholar
  9. Edmonds B (2007) The practical modelling of context-dependent causal processes----a recasting of Robert Rosen’s thought. Chem Biodiv (special issue on Robert Rosen) 4(1):2386–2395 CrossRefGoogle Scholar
  10. Edmonds B (2009) The nature of noise. In: Squazzoni F (ed) Epistemological aspects of computer simulation in the social sciences. Lecture notes in artificial intelligence, vol 5466, pp 169–182 CrossRefGoogle Scholar
  11. Edmonds B (2010) Bootstrapping knowledge about social phenomena using simulation models. JASSS 13(1):8. Google Scholar
  12. Edmonds B (in press) Complexity and context-dependency. Found Sci Google Scholar
  13. Edmonds B, Norling E (2007) Integrating learning and inference in multi-agent systems using cognitive context. In: Antunes L, Takadama K (eds) Multi-agent-based simulation. VII. Lecture notes in artificial intelligence, vol 4442, pp 142–155 CrossRefGoogle Scholar
  14. Elliott CS, Hayward DM (1998) The expanding definition of framing and its particular impact on economic experimentation. J Socio-Econ 27(2):229–243 CrossRefGoogle Scholar
  15. Entman RM (1993) Framing: towards clarification of a fractured paradigm. J Commun 43:51–58 CrossRefGoogle Scholar
  16. Gärdenfors P (1997) The pragmatic role of modality in natural language. In: 20th Wittgenstein symposium, Kirchberg am Weshel, Lower Austria, Wittgenstein Society Google Scholar
  17. Gigerenzer G (1996) Rationality: Why social context matters. In: Baltes PB, Staudinger U (eds) Interactive minds: life-span perspectives on the social foundation of cognition. Cambridge University Press, Cambridge Google Scholar
  18. Gilbert N (2006) When does social simulation need cognitive models? In: Sun R (ed) Cognition and multi-agent interaction: from cognitive modeling to social simulation. Cambridge University Press, Cambridge, pp 428–432 Google Scholar
  19. Goffman E (1974) Frame analysis: an essay on the organization of experience. Harvard University Press, Cambridge Google Scholar
  20. Greiner R, Darken C, Santoso NI (2001) Efficient reasoning. ACM Comput Surv 33(1):1–30 CrossRefGoogle Scholar
  21. Hartmann S (2005) Models and stories in hadron physics. Preprint, (accessed 2010-10-13)
  22. Hayes P (1995) Contexts in context. In: Context in knowledge representation and natural language, AAAI Fall Symposium, November 1997. MIT Press, Cambridge Google Scholar
  23. Jolly A (2005) Social intelligence in primates and primatologists session. Invited talk AISB convention 2005 on social intelligence and interaction in animals, robots and agents, University of Hertfordshire, Hatfield, England, April 2005 Google Scholar
  24. Kaneko K (1990) Globally coupled chaos violates the law of large numbers but not the central-limit theorem. Phys Rev Lett 65:1391–1394 CrossRefGoogle Scholar
  25. Kokinov B, Grinberg M (2001) Simulating context effects in problem solving with AMBR. In: Akman V, Bouquet P, Thomason R, Young RA (eds) Modelling and using context, vol 2116. Springer, Berlin, pp 221–234 CrossRefGoogle Scholar
  26. Kuhn T (1966) The structure of scientific revolutions. University of Chicago Press, Chicago Google Scholar
  27. McCarthy J, Hayes PJ (1969) Some philosophical problems from the standpoint of artificial intelligence. Mach Intel 4:463–502 Google Scholar
  28. McCarthy J (1971) Generality in artificial-intelligence—Turing award lecture. Commun ACM 30(12):1030–1035 CrossRefGoogle Scholar
  29. McGilchrist I (2010) The master and his emissary: the divided brain and the making of the western world. Yale Univ. Press, New Haven Google Scholar
  30. Nelson TE, Oxley ZM, Clawson RA (1997) Towards a psychological of framing effects. Polit Behav 19(3):221–246 CrossRefGoogle Scholar
  31. Pearl J (2000) Causality. Cambridge University Press, Cambridge Google Scholar
  32. Polanyi M (1966) The tacit dimension. Doubleday Google Scholar
  33. Schatz J, Craft S, Koby M, DeBaun MR (2004) Asymmetries in visual-spatial processing following childhood stroke. Neuropsychology 18:340–352 CrossRefGoogle Scholar
  34. Schlosser A, Voss M, Brückner L (2005) On the simulation of global reputation systems. J Artif Soc Soc Simul 9(1):4. Google Scholar
  35. Shafir E, Simonson I, Tversky A (1993) Reason-based choice. Cognition 49(1–2):11–36 CrossRefGoogle Scholar
  36. Schelling TC (1969) Models of segregation. Am Econ Rev 59(2):488–493 Google Scholar
  37. Schelling TC (1971) Dynamic models of segregation. J Math Sociol 1:143–186 CrossRefGoogle Scholar
  38. Terán O (2004) Understanding MABS and social simulation: switching between languages in a hierarchy of levels. J Artif Soc Soc Simul 7(4):5. Google Scholar
  39. Tversky A, Kahneman D (1981) The framing of decisions and the psychology of choice. Science 211(4481):453–458 CrossRefGoogle Scholar
  40. Tykhonov D, Jonker C, Meijer S, Verwaart T (2008) Agent-based simulation of the trust and tracing game for supply chains and networks. J Artif Soc Soc Simul 11(3):1. Google Scholar
  41. Volberg G, Hubner R (2004) On the role of response conflicts and stimulus position for hemispheric differences in global/local processing: an ERP study. Neuropsychologia 42:1805–1813 CrossRefGoogle Scholar
  42. Wheeler M, Clark A (1999) Genic representation: reconciling content and causal complexity. Br J Philos Sci 50(1):103–135 CrossRefGoogle Scholar
  43. Zadrozny W (1997) A pragmatic approach to context. In: Context in knowledge representation and natural language, AAAI fall symposium, November 1997. MIT Press, Cambridge Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Centre for Policy ModellingManchester Metropolitan UniversityManchesterUK

Personalised recommendations