Czechoslovak Mathematical Journal

, Volume 66, Issue 1, pp 119–125 | Cite as

Hyperreflexivity of bilattices

Article

Abstract

The notion of a bilattice was introduced by Shulman. A bilattice is a subspace analogue for a lattice. In this work the definition of hyperreflexivity for bilattices is given and studied. We give some general results concerning this notion. To a given lattice L we can construct the bilattice \(\sum {_L} \). Similarly, having a bilattice Σ we may consider the lattice \(\mathcal{L}_\Sigma \). In this paper we study the relationship between hyperreflexivity of subspace lattices and of their associated bilattices. Some examples of hyperreflexive or not hyperreflexive bilattices are given.

Keywords

reflexive bilattice hyperreflexive bilattice subspace lattice bilattice 

MSC 2010

47A15 47L99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. Arveson: Interpolation problems in nest algebras. J. Funct. Anal. 20 (1975), 208–233.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    K. R. Davidson, K. J. Harrison: Distance formulae for subspace lattices. J. Lond. Math. Soc., (2) 39 (1989), 309–323.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    K. Kliś-Garlicka: Reflexivity of bilattices. Czech. Math. J. 63 (2013), 995–1000.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    J. Kraus, D. R. Larson: Reflexivity and distance formulae. Proc. Lond. Math. Soc. (3) 53 (1986), 340–356.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    V. Shulman, L. Turowska: Operator synthesis. I. Synthetic sets, bilattices and tensor algebras. J. Funct. Anal. 209 (2004), 293–331.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    V. Shulman: A review of “Nest Algebras by K. R. Davidson, Longman Sci. and Techn. Pitman Research Notes Math., 1988”. Algebra and Analiz 2 (1990), 236–255. http://www.mathnet.ru/links/04e6653e78d90590f32a76de1b827b3b/aa194.pdf.MathSciNetGoogle Scholar

Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2016

Authors and Affiliations

  1. 1.Department of Applied MathematicsUniversity of AgricultureKrakówPoland

Personalised recommendations