Czechoslovak Mathematical Journal

, Volume 65, Issue 1, pp 179–190 | Cite as

Generalized derivations on Lie ideals in prime rings

  • Basudeb Dhara
  • Sukhendu Kar
  • Sachhidananda Mondal


Let R be a prime ring with its Utumi ring of quotients U and extended centroid C. Suppose that F is a generalized derivation of R and L is a noncentral Lie ideal of R such that F(u)[F(u), u] n = 0 for all uL, where n ⩾ 1 is a fixed integer. Then one of the following holds:
  1. (1)

    there exists λC such that F(x) = λx for all xR

  2. (2)

    R satisfies s 4 and F(x) = ax + xb for all xR, with a, bU and abC

  3. (3)

    char(R) = 2 and R satisfies s 4.


As an application we also obtain some range inclusion results of continuous generalized derivations on Banach algebras.


prime ring derivation generalized derivation extended centroid Utumi quotient ring Lie ideal Banach algebra 

MSC 2010

16W25 16W80 16N60 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K. I. Beidar, W. S. Martindale III, A. V. Mikhalev: Rings with Generalized Identities. Monographs and Textbooks in Pure and Applied Mathematics 196, Marcel Dekker, New York, 1996.MATHGoogle Scholar
  2. [2]
    J. Bergen, I. N. Herstein, J. W. Kerr: Lie ideals and derivations of prime rings. J. Algebra 71 (1981), 259–267.CrossRefMATHMathSciNetGoogle Scholar
  3. [3]
    M. Brešar, J. Vukman: On left derivations and related mappings. Proc. Am. Math. Soc. 110 (1990), 7–16.CrossRefMATHGoogle Scholar
  4. [4]
    L. Carini, V. De Filippis: Commutators with power central values on a Lie ideal. Pac. J. Math. 193 (2000), 269–278.CrossRefMATHGoogle Scholar
  5. [5]
    C.-L. Chuang: GPIs having coefficients in Utumi quotient rings. Proc. Am. Math. Soc. 103 (1988), 723–728.CrossRefMATHMathSciNetGoogle Scholar
  6. [6]
    V. De Filippis: Generalized derivations and commutators with nilpotent values on Lie ideals. Tamsui Oxf. J. Math. Sci. 22 (2006), 167–175.MATHMathSciNetGoogle Scholar
  7. [7]
    V. de Filippis, G. Scudo, M. S. Tammam El-Sayiad: An identity with generalized derivations on Lie ideals, right ideals and Banach algebras. Czech. Math. J. 62 (2012), 453–468.CrossRefMATHGoogle Scholar
  8. [8]
    B. Dhara: Power values of derivations with annihilator conditions on Lie ideals in prime rings. Commun. Algebra 37 (2009), 2159–2167.CrossRefMATHMathSciNetGoogle Scholar
  9. [9]
    T. S. Erickson, W. S. Martindale III, J. M. Osborn: Prime nonassociative algebras. Pac. J. Math. 60 (1975), 49–63.CrossRefMATHMathSciNetGoogle Scholar
  10. [10]
    B. E. Johnson, A. M. Sinclair: Continuity of derivations and a problem of Kaplansky. Am. J. Math. 90 (1968), 1067–1073.CrossRefMATHMathSciNetGoogle Scholar
  11. [11]
    N. Jacobson: Structure of Rings. American Mathematical Society Colloquium Publications 37, American Mathematical Society, Providence, 1964.Google Scholar
  12. [12]
    V. K. Kharchenko: Differential identities of prime rings. Algebra Logic 17 (1979), 155–168; translation from Algebra i Logika 17 (1978), 220–238, 242–243. (In Russian.)CrossRefMATHGoogle Scholar
  13. [13]
    B.-D. Kim: Jordan derivations on prime rings and their applications in Banach algebras, I. Commun. Korean Math. Soc. 28 (2013), 535–558.CrossRefMATHMathSciNetGoogle Scholar
  14. [14]
    B.-D. Kim: Derivations of semiprime rings and noncommutative Banach algebras. Commun. Korean Math. Soc. 17 (2002), 607–618.CrossRefMATHMathSciNetGoogle Scholar
  15. [15]
    B. Kim: On the derivations of semiprime rings and noncommutative Banach algebras. Acta Math. Sin., Engl. Ser. 16 (2000), 21–28.CrossRefMATHMathSciNetGoogle Scholar
  16. [16]
    C. Lanski: Differential identities, Lie ideals, and Posner’s theorems. Pac. J. Math. 134 (1988), 275–297.MATHMathSciNetGoogle Scholar
  17. [17]
    C. Lanski, S. Montgomery: Lie structure of prime rings of characteristic 2. Pac. J. Math. 42 (1972), 117–136.CrossRefMATHMathSciNetGoogle Scholar
  18. [18]
    P. H. Lee, T. K. Lee: Lie ideals of prime rings with derivations. Bull. Inst. Math., Acad. Sin. 11 (1983), 75–80.MATHGoogle Scholar
  19. [19]
    T.-K. Lee: Generalized derivations of left faithful rings. Commun. Algebra 27 (1999), 4057–4073.CrossRefMATHGoogle Scholar
  20. [20]
    T. K. Lee: Semiprime rings with differential identities. Bull. Inst. Math., Acad. Sin. 20 (1992), 27–38.MATHGoogle Scholar
  21. [21]
    W. S. Martindale III: Prime rings satisfying a generalized polynomial identity. J. Algebra 12 (1969), 576–584.CrossRefMATHMathSciNetGoogle Scholar
  22. [22]
    M. Mathieu: Properties of the product of two derivations of a C*-algebra. Can. Math. Bull. 32 (1989), 490–497.CrossRefMATHMathSciNetGoogle Scholar
  23. [23]
    M. Mathieu, G. J. Murphy: Derivations mapping into the radical. Arch. Math. 57 (1991), 469–474.CrossRefMATHMathSciNetGoogle Scholar
  24. [24]
    K.-H. Park: On derivations in noncommutative semiprime rings and Banach algebras. Bull. Korean Math. Soc. 42 (2005), 671–678.CrossRefMATHMathSciNetGoogle Scholar
  25. [25]
    E. C. Posner: Derivations in prime rings. Proc. Am. Math. Soc. 8 (1957), 1093–1100.CrossRefMathSciNetGoogle Scholar
  26. [26]
    A. M. Sinclair: Continuous derivations on Banach algebras. Proc. Am. Math. Soc. 20 (1969), 166–170.CrossRefMATHMathSciNetGoogle Scholar
  27. [27]
    I. M. Singer, J. Wermer: Derivations on commutative normed algebras. Math. Ann. 129 (1955), 260–264.CrossRefMATHMathSciNetGoogle Scholar
  28. [28]
    M. P. Thomas: The image of a derivation is contained in the radical. Ann. Math. (2) 128 (1988), 435–460.CrossRefMATHGoogle Scholar
  29. [29]
    J. Vukman: On derivations in prime rings and Banach algebras. Proc. Am. Math. Soc. 116 (1992), 877–884.CrossRefMATHMathSciNetGoogle Scholar
  30. [30]
    B. Yood: Continuous homomorphisms and derivations on Banach algebras. Proceedings of the Conference on Banach Algebras and Several Complex Variables, New Haven, Conn., 1983 (F. Greenleaf et al., eds.). Contemp. Math. 32, Amer. Math. Soc., Providence, 1984, pp. 279–284.CrossRefGoogle Scholar

Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2015

Authors and Affiliations

  • Basudeb Dhara
    • 1
  • Sukhendu Kar
    • 2
  • Sachhidananda Mondal
    • 2
  1. 1.Department of MathematicsBelda CollegeBelda, Paschim MedinipurIndia
  2. 2.Department of MathematicsJadavpur UniversityJadavpurIndia

Personalised recommendations