Czechoslovak Mathematical Journal

, Volume 63, Issue 4, pp 995–1000 | Cite as

Reflexivity of bilattices



We study reflexivity of bilattices. Some examples of reflexive and non-reflexive bilattices are given. With a given subspace lattice ℒ we may associate a bilattice Σ. Similarly, having a bilattice Σ we may construct a subspace lattice Σ. Connections between reflexivity of subspace lattices and associated bilattices are investigated. It is also shown that the direct sum of any two bilattices is never reflexive.


reflexive algebra reflexive lattice subspace lattice bilattice 

MSC 2010

47A15 47L99 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K. R. Davidson, K. J. Harrison: Distance formulae for subspace lattices. J. Lond. Math. Soc., II. Ser. 39 (1989), 309–323.CrossRefMATHMathSciNetGoogle Scholar
  2. [2]
    D. Hadwin: General view of reflexivity. Trans. Am. Math. Soc. 344 (1994), 325–360.CrossRefMATHMathSciNetGoogle Scholar
  3. [3]
    P. R. Halmos: Two subspaces. Trans. Am. Math. Soc. 144 (1969), 381–389.CrossRefMATHMathSciNetGoogle Scholar
  4. [4]
    A. I. Loginov, V. S. Shulman: Hereditary and intermediate reflexivity of W*-algebras. Izv. Akad. Nauk SSSR, Ser. Mat. 39 (1975), 1260–1273. (In Russian.)MATHMathSciNetGoogle Scholar
  5. [5]
    D. Sarason: Invariant subspaces and unstarred operator algebras. Pac. J. Math. 17 (1966), 511–517.CrossRefMATHMathSciNetGoogle Scholar
  6. [6]
    V. S. Shulman: Nest algebras by K. R. Davidson: a review. Algebra Anal. 2 (1990), 236–255.Google Scholar
  7. [7]
    V. S. Shulman, L. Turowska: Operator synthesis. I. Synthetic sets, bilattices and tensor algebras. J. Funct. Anal. 209 (2004), 293–331.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2013

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of AgricultureKrakówPoland

Personalised recommendations