Czechoslovak Mathematical Journal

, Volume 62, Issue 1, pp 77–104 | Cite as

Integrals and Banach spaces for finite order distributions

  • Erik TalvilaEmail author


Let B c denote the real-valued functions continuous on the extended real line and vanishing at −∞. Let B r denote the functions that are left continuous, have a right limit at each point and vanish at −∞. Define A c n to be the space of tempered distributions that are the nth distributional derivative of a unique function in B c . Similarly with A r n from B r . A type of integral is defined on distributions in A c n and A r n . The multipliers are iterated integrals of functions of bounded variation. For each n ∈ ℕ, the spaces A c n and A r n are Banach spaces, Banach lattices and Banach algebras isometrically isomorphic to B c and B r , respectively. Under the ordering in this lattice, if a distribution is integrable then its absolute value is integrable. The dual space is isometrically isomorphic to the functions of bounded variation. The space A c 1 is the completion of the L 1 functions in the Alexiewicz norm. The space A r 1 contains all finite signed Borel measures. Many of the usual properties of integrals hold: Hölder inequality, second mean value theorem, continuity in norm, linear change of variables, a convergence theorem.


regulated function regulated primitive integral Banach space Banach lattice Banach algebra Schwartz distribution generalized function distributional Denjoy integral continuous primitive integral Henstock-Kurzweil integral primitive 

MSC 2010

26A39 46B42 46E15 46F10 46G12 46J10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Alexiewicz: Linear functionals on Denjoy-integrable functions. Colloq. Math. 1 (1948), 289–293.MathSciNetzbMATHGoogle Scholar
  2. [2]
    C. D. Aliprantis, K. C Border: Infinite Dimensional Analysis. A Hitchhiker’s Guide. Springer, Berlin, 2006.zbMATHGoogle Scholar
  3. [3]
    L. Ambrosio, N. Fusco, D. Pallara: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. Oxford: Clarendon Press, 2000.zbMATHGoogle Scholar
  4. [4]
    S. Axler, P. Bourdon, W. Ramey: Harmonic Function Theory. Springer, New York, 2001.zbMATHGoogle Scholar
  5. [5]
    J. C. Burkill: An integral for distributions. Proc. Camb. Philos. Soc. 53 (1957), 821–824.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    V. G. Čelidze, A. G. Džvaršeĭšvili: The Theory of the Denjoy Integral and Some Applications. Transl. from the Russian by P. S. Bullen. World Scientific, Singapore, 1989.Google Scholar
  7. [7]
    A. G. Das, G. Sahu: An equivalent Denjoy type definition of the generalized Henstock Stieltjes integral. Bull. Inst. Math., Acad. Sin. 30 (2002), 27–49.MathSciNetzbMATHGoogle Scholar
  8. [8]
    N. Dunford, J. T. Schwartz: Linear Operators. Part I: General theory. With the assistance of William G. Bade and Robert G. Bartle. Repr. of the orig., publ. 1959 by John Wiley & Sons Ltd., Paperback ed. New York etc.: John Wiley & Sons Ltd. xiv, 1988.Google Scholar
  9. [9]
    R. J. Fleming, J. E. Jamison: Isometries on Banach Spaces: Function spaces. Chapman and Hall, Boca Raton, 2003.zbMATHGoogle Scholar
  10. [10]
    G. B. Folland: Real Analysis. Modern Techniques and Their Applications. 2nd ed. Wiley, New York, 1999.zbMATHGoogle Scholar
  11. [11]
    D. Fraňkova: Regulated functions. Math. Bohem. 116 (1991), 20–59.MathSciNetzbMATHGoogle Scholar
  12. [12]
    F. G. Friedlander, M. Joshi: Introduction to the Theory of Distributions. Cambridge etc.: Cambridge University Press. III, 1982.zbMATHGoogle Scholar
  13. [13]
    R. A. Gordon: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. American Mathematical Society, Providence, 1994.zbMATHGoogle Scholar
  14. [14]
    E. Kaniuth: A Course in Commutative Banach Algebras. Springer, New York, 2009.zbMATHCrossRefGoogle Scholar
  15. [15]
    R. Kannan, C. K. Krueger: Advanced Analysis on the Real Line. Springer, New York, 1996.zbMATHGoogle Scholar
  16. [16]
    P. Y. Lee, R. Vyborny: The Integral: An Easy Approach after Kurzweil and Henstock. Cambridge University Press, Cambridge, 2000.zbMATHGoogle Scholar
  17. [17]
    S. Mac Lane, G. Birkhoff: Algebra. Macmillan, New York, 1979.Google Scholar
  18. [18]
    R. M. McLeod: The Generalized Riemann Integral. The Mathematical Association of America, Washington, 1980.zbMATHGoogle Scholar
  19. [19]
    J. Mikusiński, R. Sikorski: The elementary theory of distributions. I. Rozprawy Mat. 12 (1957), 52 pp.Google Scholar
  20. [20]
    J. A. Musielak: A note on integrals of distributions. Pr. Mat. 8 (1963), 1–7.MathSciNetzbMATHGoogle Scholar
  21. [21]
    M. Oberguggenberger: Multiplication of Distributions and Applications to Partial Differential Equations. Longman Scientific and Technical, Harlow, 1992.zbMATHGoogle Scholar
  22. [22]
    A. M. Russell: Necessary and sufficient conditions for the existence of a generalized Stieltjes integral. J. Aust. Math. Soc., Ser. A 26 (1978), 501–510.zbMATHCrossRefGoogle Scholar
  23. [23]
    L. Schwartz: Thèorie des Distributions. Nouvelle ed., entie’rement corr., refondue et augm. Hermann, Paris, 1978. (In French.)zbMATHGoogle Scholar
  24. [24]
    R. Sikorski: Integrals of distributions. Stud. Math. 20 (1961), 119–139.MathSciNetzbMATHGoogle Scholar
  25. [25]
    E. Talvila: Limits and Henstock integrals of products. Real Anal. Exch. 25 (1999/2000), 907–918.MathSciNetGoogle Scholar
  26. [26]
    E. Talvila: The distributional Denjoy integral. Real Anal. Exch. 33 (2008), 51–82.MathSciNetzbMATHGoogle Scholar
  27. [27]
    E. Talvila: Convolutions with the continuous primitive integral. Abstr. Appl. Anal. 2009 (2009), 18 pp.Google Scholar
  28. [28]
    E. Talvila: The regulated primitive integral. Ill. J. Math. 53 (2009), 1187–1219.MathSciNetzbMATHGoogle Scholar
  29. [29]
    B. S. Thomson: Characterizations of an indefinite Riemann integral. Real Anal. Exch. 35 (2010), 487–492.MathSciNetzbMATHGoogle Scholar
  30. [30]
    A. H. Zemanian: Distribution Theory and Transform Analysis. An Introduction to Generalized Functions, with Applications. Reprint, slightly corrected. Dover Publications, New York, 1987.zbMATHGoogle Scholar
  31. [31]
    W. P. Ziemer: Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation. Springer-Verlag, Berlin, 1989.zbMATHGoogle Scholar

Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2012

Authors and Affiliations

  1. 1.University of the Fraser ValleyAbbotsfordCanada

Personalised recommendations