Advertisement

Czechoslovak Mathematical Journal

, Volume 59, Issue 1, pp 101–128 | Cite as

The convergence space of minimal USCO mappings

  • R. Anguelov
  • O. F. K. Kalenda
Article

Abstract

A convergence structure generalizing the order convergence structure on the set of Hausdorff continuous interval functions is defined on the set of minimal usco maps. The properties of the obtained convergence space are investigated and essential links with the pointwise convergence and the order convergence are revealed. The convergence structure can be extended to a uniform convergence structure so that the convergence space is complete. The important issue of the denseness of the subset of all continuous functions is also addressed.

Keywords

minimal usco map convergence space complete uniform convergence space pointwise convergence order convergence 

MSC 2000

54C60 54A05 54E15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Anguelov: Dedekind order completion of C(X) by Hausdorff continuous functions. Quaestiones Mathematicae 27 (2004), 153–170.zbMATHMathSciNetGoogle Scholar
  2. [2]
    R. Anguelov and E. E. Rosinger: Solving Large Classes of Nonlinear Systems of PDE’s. Computers and Mathematics with Applications 53 (2007), 491–507.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    R. Anguelov and E. E. Rosinger: Hausdorff Continuous Solutions of Nonlinear PDEs through the Order Completion Method. Quaestiones Mathematicae 28 (2005), 271–285.zbMATHMathSciNetGoogle Scholar
  4. [4]
    R. Anguelov and J. H. van der Walt: Order Convergence Structure on C(X). Quaestiones Mathematicae 28 (2005), 425–457.zbMATHMathSciNetGoogle Scholar
  5. [5]
    R. Beattie and H.-P. Butzmann: Convergence structures and applications to functional analysis. Kluwer Academic Plublishers, Dordrecht, Boston, London, 2002.zbMATHGoogle Scholar
  6. [6]
    J. Borwein and I. Kortezov: Constructive minimal uscos. C.R. Bulgare Sci 57 (2004), 9–12.zbMATHMathSciNetGoogle Scholar
  7. [7]
    M. Fabian: Gâteaux differentiability of convex functions and topology: weak Asplund spaces. Wiley-Interscience, New York, 1997.Google Scholar
  8. [8]
    R. W. Hansell, J. E. Jayne and M. Talagrand: First class selectors for weakly upper semi-continuous multi-valued maps in Banach spaces. J. Reine Angew. Math. 361 (1985), 201–220.zbMATHMathSciNetGoogle Scholar
  9. [9]
    W. A. Luxemburg and A. C. Zaanen: Riesz Spaces I. North-Holland, Amsterdam, London, 1971.zbMATHGoogle Scholar
  10. [10]
    O. Kalenda: Stegall compact spaces which are not fragmentable. Topol. Appl. 96 (1999), 121–132.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    O. Kalenda: Baire-one mappings contained in a usco map. Comment. Math. Univ. Carolinae 48 (2007), 135–145.MathSciNetGoogle Scholar
  12. [12]
    B. Sendov: Hausdorff approximations. Kluwer Academic, Boston, 1990.zbMATHGoogle Scholar
  13. [13]
    J. Spurný: Banach space valued mappings of the first Baire class contained in usco mappings. Comment. Math. Univ. Carolinae 48 (2007), 269–272.Google Scholar
  14. [14]
    V. V. Srivatsa: Baire class 1 selectors for upper semicontinuous set-valued maps. Trans. Amer. Math. Soc. 337 (1993), 609–624.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Mathematical Institute, Academy of Sciences of Czech Republic 2009

Authors and Affiliations

  1. 1.Department of Mathematics and Applied MathematicsUniversity of PretoriaPretoriaSouth Africa
  2. 2.Faculty of Mathematics and Physics, Department of Mathematical AnalysisCharles UniversityPraha 8Czech Republic

Personalised recommendations