Czechoslovak Mathematical Journal

, Volume 58, Issue 4, pp 1221–1231 | Cite as

A measure-theoretic characterization of the Henstock-Kurzweil integral revisited

Article

Abstract

In this paper we show that the measure generated by the indefinite Henstock-Kurzweil integral is Fσδ regular. As a result, we give a shorter proof of the measure-theoretic characterization of the Henstock-Kurzweil integral.

Keywords

Henstock variational measure Henstock-Kurzweil integral 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Bongiorno, L. Di Piazza and V. A. Skvortsov: Variational measures related to local systems and the ward property of \( \mathcal{P} \)-adic path bases. Czech. Math. J. 56 (2006), 559–578.CrossRefGoogle Scholar
  2. [2]
    L. Di Piazza: Variational measures in the theory of the integration in ℝm. Czech. Math. J. 51 (2001), 95–110.MATHCrossRefGoogle Scholar
  3. [3]
    Claude-Alain Faure: A descriptive definition of some multidimensional gauge integrals. Czech. Math. J. 45 (1995), 549–562.MATHMathSciNetGoogle Scholar
  4. [4]
    R. Henstock, P. Muldowney and V. A. Skvortsov: Partitioning infinite-dimensional spaces for generalized Riemann integration. Bull. London Math. Soc. 38 (2006), 795–803.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    J. Kurzweil and J. Jarník: Differentiability and integrability in n dimensions with respect to α-regular intervals. Results Math. 21 (1992), 138–151.MATHMathSciNetGoogle Scholar
  6. [6]
    Lee Tuo-Yeong: A full descriptive definition of the Henstock-Kurzweil integral in the Euclidean space. Proc. London Math. Soc. 87 (2003), 677–700.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Lee Tuo-Yeong: Product variational measures and Fubini-Tonelli type theorems for the Henstock-Kurzweil integral. J. Math. Anal. Appl. 298 (2004), 677–692.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Lee Tuo-Yeong: A characterisation of multipliers for the Henstock-Kurzweil integral. Math. Proc. Cambridge Philos. Soc. 138 (2005), 487–492.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Lee Tuo-Yeong: The Henstock variational measure, Baire functions and a problem of Henstock. Rocky Mountain J. Math 35 (2005), 1981–1997.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    Lee Tuo-Yeong: Some full descriptive characterizations of the Henstock-Kurzweil integral in the Euclidean space. Czech. Math. J. 55 (2005), 625–637.MATHCrossRefGoogle Scholar
  11. [11]
    Lee Tuo-Yeong: Product variational measures and Fubini-Tonelli type theorems for the Henstock-Kurzweil integral II. J. Math. Anal. Appl. 323 (2006), 741–745.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    B. S. Thomson: Derivates of interval functions. Mem. Amer. Math. Soc. 93 (1991).Google Scholar
  13. [13]
    A. J. Ward: On the derivation of additive interval functions of intervals in m-dimensional space. Fund. Math. 28 (1937), 265–279.MATHGoogle Scholar

Copyright information

© Mathematical Institute, Academy of Sciences of Czech Republic 2008

Authors and Affiliations

  1. 1.Mathematics and Mathematics Education, National Institute of EducationNanyang Technological UniversitySingaporeRepublic of Singapore

Personalised recommendations