Czechoslovak Mathematical Journal

, Volume 58, Issue 3, pp 799–821 | Cite as

On the determination of the potential function from given orbits

  • L. Alboul
  • J. Mencía
  • R. Ramírez
  • N. Sadovskaia
Article

Abstract

The paper deals with the problem of finding the field of force that generates a given (N − 1)-parametric family of orbits for a mechanical system with N degrees of freedom. This problem is usually referred to as the inverse problem of dynamics. We study this problem in relation to the problems of celestial mechanics. We state and solve a generalization of the Dainelli and Joukovski problem and propose a new approach to solve the inverse Suslov’s problem. We apply the obtained results to generalize the theorem enunciated by Joukovski in 1890, solve the inverse Stäckel problem and solve the problem of constructing the potential-energy function U that is capable of generating a bi-parametric family of orbits for a particle in space. We determine the equations for the sought-for function U and show that on the basis of these equations we can define a system of two linear partial differential equations with respect to U which contains as a particular case the Szebehely equation. We solve completely a special case of the inverse dynamics problem of constructing U that generates a given family of conics known as Bertrand’s problem. At the end we establish the relation between Bertrand’s problem and the solutions to the Heun differential equation. We illustrate our results by several examples.

Keywords

ordinary differential equations mechanical system potential-energy function inverse problem of dynamics orbit Riemann metric Stäckel system Heun equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    V. I. Arnold: Dynamical Systems 3. Viniti, Moscow, 1985. (In Russian.)Google Scholar
  2. [2]
    M. I. Bertrand: Sur la posibilité de déduire d’une seule de lois de Kepler le principe de l’attraction. Comtes rendues 9 (1877).Google Scholar
  3. [3]
    G. Bozis: The inverse problem of dynamics: basic facts. Inverse Probl. 11 (1995), 687–708; Mech. 38 (1986), 357.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    C. L. Charlier: Celestial Mechanics (Die Mechanik Des Himmels). Nauka, Moscow, 1966. (In Russian.)Google Scholar
  5. [5]
    U. Dainelli: Sul movimento per una linea qualunque. Giorn. Mat. 18 (1880). (In Italian.)Google Scholar
  6. [6]
    G. H. Duboshin: Celestial Mechanics. Nauka, Moscow, 1968. (In Russian.)Google Scholar
  7. [7]
    V. P. Ermakov: Determination of the potential function from given partial integrals. Math. Sbornik, Ser. 4 15 (1881). (In Russian.)Google Scholar
  8. [8]
    A. S. Galiullin: Inverse Problems of Dynamics. Mir Publishers, Moscow, 1984.Google Scholar
  9. [9]
    N. E. Joukovski: Construction of the potential function from a given family of trajectories. Gostexizdat. (In Russian.)Google Scholar
  10. [10]
    J. Klein: Espaces variationnels et mécanique. Ann Inst. Fourier 12 (1962), 1–124.MATHGoogle Scholar
  11. [11]
    A. Kratzer, W. Franz: Transzendente Funktionen. Geest & Portig K.-G., Leipzig, 1960.Google Scholar
  12. [12]
    V. V. Kozlov: Dynamical Systems X. General Theory of vortices. Encyclopedia of Math. Sciencies 67. Spinger, Berlin, 2003.MATHGoogle Scholar
  13. [13]
    S. Lie: Zur allgemeinen Theorie der partiellen Differentialgleichungen beliebiger Ordung. Leipzig. Ber. Heft 1.-S, 1895, pp. 53–128.Google Scholar
  14. [14]
    I. Newton: Philosophiæ Naturalis Principia Mathematica. London, 1687.Google Scholar
  15. [15]
    F. Puel: Celestial Mechanics 32.Google Scholar
  16. [16]
    R. Ramírez, N. Sadovskaia N.: Inverse problem in celestial mechanic. Atti. Sem. Mat. Fis. Univ. Modena LII (2004), 47–68.Google Scholar
  17. [17]
    A. Ronveaux (ed.): Heun’s differential equations. Oxford University Press, Oxford, 1995.MATHGoogle Scholar
  18. [18]
    N. Sadovskaia: Inverse problem in theory of ordinary differential equations. PhD. Thesis. Univ. Politécnica de Cataluna, 2002. (In Spanish.)Google Scholar
  19. [19]
    G. K. Suslov: Determination of the power function from given particular integrals. Kiev, 1890. (In Russian.)Google Scholar
  20. [20]
    V. Szebehely: Open problems on the eve of the next millenium. Celest. Mech. Dyn. Astron. 65 (1997), 205–211.MATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    V. Szebehely: On the determination of the potential E. Proverbio, Proc. Int. Mtg. Rotation of the Earth, Bologna, 1974.Google Scholar
  22. [22]
    E. T. Whittaker: A Treatise on the Analytic Dynamics of Particles and Rigid Bodies. Cambridge University Press, Cambridge, 1959.Google Scholar

Copyright information

© Mathematical Institute, Academy of Sciences of Czech Republic 2008

Authors and Affiliations

  • L. Alboul
    • 1
  • J. Mencía
    • 2
  • R. Ramírez
    • 2
  • N. Sadovskaia
    • 3
  1. 1.Material and Engineering Research InstituteSheffield Hallam UniversitySheffield, YorkshireUK
  2. 2.Departamento de Ingeniería Informática y MatemáticaUniversidad Rovira y VirgiliTarragonaSpain
  3. 3.Departemento de Matemática Aplicada IIUniversidad Politécnica de CataluñaBarcelonaSpain

Personalised recommendations