Czechoslovak Mathematical Journal

, Volume 56, Issue 2, pp 425–435 | Cite as

Functionals on function and sequence spaces connected with the exponential stability of evolutionary processes

  • Petre Preda
  • Alin Pogan
  • Ciprian Preda


The exponential stability property of an evolutionary process is characterized in terms of the existence of some functionals on certain function spaces. Thus are generalized some well-known results obtained by Datko, Rolewicz, Littman and Van Neerven.


evolutionary processes uniform exponential stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Datko: Extending a theorem of Liapunov to Hilbert spaces. J. Math. Anal. Appl. 32 (1970), 610–616.zbMATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    R. Datko: Uniform asymptotic stability of evolutionary processes in a Banach space. SIAM. J. Math. Analysis 3 (1973), 428–445.MathSciNetCrossRefGoogle Scholar
  3. [3]
    E. Hille and R. S. Phillips: Functional Analysis and Semi-groups (revised edition). Amer. Math. Soc. Colloq. Publ. Vol. 31, Providence, R.I., 1957.Google Scholar
  4. [4]
    W. Littman: A generalization of the theorem Datko-Pazy. Lecture Notes in Control and Inform. Sci., Springer Verlag 130 (1989), 318–323.zbMATHMathSciNetGoogle Scholar
  5. [5]
    J. M. A. M. van Neerven: Exponential stability of operators and semigroups. J. Func. Anal. 130 (1995), 293–309.zbMATHCrossRefGoogle Scholar
  6. [6]
    J. M. A. M. van Neerven: The Asymptotic Behaviour of Semigroups of Linear Operators, Theory, Advances and Applications, Vol. 88. Birkhauser, 1996.Google Scholar
  7. [7]
    J. M. A. M. van Neerven: Lower semicontinuity and the theorem of Datko and Pazy. Int. Eq. Op. Theory 42 (2002), 482–492.zbMATHCrossRefGoogle Scholar
  8. [8]
    A. Pazy: On the applicability of Liapunov’s theorem in Hilbert spaces. SIAM. J. Math. Anal. Appl. 3 (1972), 291–294.zbMATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    A. Pazy: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, 1983.Google Scholar
  10. [10]
    S. Rolewicz: On uniform N-equistability. J. Math. Anal. Appl. 115 (1986), 434–441.zbMATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    J. Zabczyk: Remarks on the control of discrete-time distributed parameter systems. SIAM J. Control. Optim. 12 (1974), 721–735.zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Mathematical Institute, Academy of Sciences of Czech Republic 2006

Authors and Affiliations

  • Petre Preda
    • 1
  • Alin Pogan
    • 2
  • Ciprian Preda
    • 3
  1. 1.Dept. of MathematicsWest University of TimişoaraRomania
  2. 2.Dept. of MathematicsUniversity of MissouriU.S.A.
  3. 3.Dept. of Electrical EngineeringUniversity of CaliforniaLos Angeles (UCLA)U.S.A.

Personalised recommendations