Czechoslovak Mathematical Journal

, Volume 55, Issue 3, pp 545–579

Nonlinear Boundary Value Problems for Second Order Differential Inclusions

  • Sophia Th. Kyritsi
  • Nikolaos Matzakos
  • Nikolaos Papageorgiou
Article

DOI: 10.1007/s10587-005-0046-5

Cite this article as:
Kyritsi, S.T., Matzakos, N. & Papageorgiou, N. Czech Math J (2005) 55: 545. doi:10.1007/s10587-005-0046-5

Abstract

In this paper we study two boundary value problems for second order strongly nonlinear differential inclusions involving a maximal monotone term. The first is a vector problem with Dirichlet boundary conditions and a nonlinear differential operator of the form xa(x, x′)′. In this problem the maximal monotone term is required to be defined everywhere in the state space ℝN. The second problem is a scalar problem with periodic boundary conditions and a differential operator of the form x ↦ (a(x)x′)′. In this case the maximal monotone term need not be defined everywhere, incorporating into our framework differential variational inequalities. Using techniques from multivalued analysis and from nonlinear analysis, we prove the existence of solutions for both problems under convexity and nonconvexity conditions on the multivalued right-hand side.

Keywords

measurable multifunction usc and lsc multifunction maximal monotone operator pseudomonotone operator generalized pseudomonotone operator coercive operator surjective operator eigenvalue eigenfunction Rayleigh quotient p-Laplacian Yosida approximation periodic problem 

Copyright information

© Mathematical Institute, Academy of Sciences of Czech Republic 2005

Authors and Affiliations

  • Sophia Th. Kyritsi
    • 1
  • Nikolaos Matzakos
    • 1
  • Nikolaos Papageorgiou
    • 1
  1. 1.Dept. of MathematicsNational Technical UniversityAthensGreece

Personalised recommendations