Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Utilization-aware energy-efficient virtual machine placement in cloud networks using NSGA-III meta-heuristic approach

  • 24 Accesses

Abstract

One of the most important issues in the context of cloud computing concerns the placement of virtual machines (VMs). The purpose of multi-objective virtual machine placement (MO-VMP) is to find the best place of VMs on physical machines (PMs) so as to reach predetermined goals. In this regard, a fundamental goal is maximizing the utilization of available resources while minimizing energy consumption. It is clear that inefficient use of computing resources (for instance CPU, memory, storage capacity, and bandwidth) could cause increased energy wastage. On the other hand, with optimal placement of VMs on PMs, one may prevent migrating them from one PM to another in the future, itself a secondary cause of increased energy consumption. Concerning the MO-VMP, there are very serious challenges in previous studies. Some of these works have attempted to minimize the number of active PMs. Others have investigated minimizing rack link traffic and optimizing communication and VM migration costs regarding routing goals. Since the MO-VMP is an NP-hard problem and involves high spatial and temporal complexities, heuristic and meta-heuristic methods have been widely used to solve the problem in the past decade. In the present research, we use the non-dominated sorting genetic algorithm (NSGA-III) to determine the optimal MO-VMP. To this end, a multi-objective optimizing problem is designed, and after introducing a non-linear convex optimization solution, we solve it with the NSGA-III method. Our main purpose is to minimize overall resource loss while minimizing power consumption as well as decreasing the number of active PMs. The simulation results on the CloudSim simulator confirm the superiority of the proposed method over basic methods such as first-fit decreasing (FFD) and exact mathematical approaches in terms of significant criteria such as execution time, utilization, resource wastage, and energy consumption.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Kaur, A., Gupta, P., Singh, M., Nayyar, A.: Data placement in era of cloud computing: a survey, taxonomy and open research issues. J. Scalable Comput. 20(2), 377–398 (2019). https://doi.org/10.12694/scpe.v20i2.1530

  2. 2.

    Wu, Y., Tornatore, M., Ferdousi, S., Mukherjee, B.: Green data center placement in optical cloud networks. IEEE Trans. Green Commun. Netw. 1(3), 347–357 (2017)

  3. 3.

    Wei, W., H, G., W, L., Zhou, T., Liu, X.: Energy efficient virtual machine placement with an improved ant colony optimization over data center networks. IEEE Access 7, 60617–60625 (2019). https://doi.org/10.1109/ACCESS.2019.2911914

  4. 4.

    Hejja, K., Hesselbach, X.: Offline and online power aware resource allocation algorithms with migration and delay constraints. Comput. Netw. 158(20), 17–34 (2019). https://doi.org/10.1016/j.comnet.2019.04.030

  5. 5.

    Luo, J., Song, W., Yin, L.: Reliable virtual machine placement based on multi-objective optimization with traffic-aware algorithm in industrial cloud. IEEE Access 6, 23043–23052 (2018). https://doi.org/10.1109/ACCESS.2018.2816983

  6. 6.

    Zheng, Q., Li, R., Li, X., Shah, N., Zhang, J., Tian, F., Chao, K.-M., Li, J.: Virtual machine consolidated placement based on multi-objective biogeography-based optimization. Future Gen Comput Syst 54, 95–122 (2016)

  7. 7.

    Mohammadi, A., Rezvani, M.H.: A novel optimized approach for resource reservation in cloud computing using producer–consumer theory of microeconomics. J. Supercomput. (2019). https://doi.org/10.1007/s11227-019-02951-1

  8. 8.

    Tavakoli-Someh, S., Rezvani, M.H.: Multi-objective virtual network function placement using NSGA-II meta-heuristic approach. J. Supercomput. (2019). https://doi.org/10.1007/s11227-019-02849-y

  9. 9.

    Liu, X.F., Zhan, Z.H., Deng, J.D., Li, Y., Gu, T., Zhang, J.: An energy efficient ant colony system for virtual machine placement in cloud computing. IEEE Trans. Evol. Comput. 22(1), 113–128 (2018)

  10. 10.

    Sun, G., Li, Y., Hongfang, Yu., Vasilakos, A.V., Xiaojiang, D., Guizani, M.: Energy-efficient and traffic-aware service function chaining orchestration in multi-domain networks. Future Gen. Comput. Syst. 91, 347–360 (2019). https://doi.org/10.1016/j.future.2018.09.037

  11. 11.

    Tavakoli-Someh, S., Rezvani, M.H.: Utilization-aware virtual network function placement using NSGA-II evolutionary computing. In: Proceedings of 5th IEEE International Conference on Knowledge-Based Engineering and Innovation (KBEI’19), Tehran, Iran (2019). https://doi.org/10.1109/kbei.2019.8734978

  12. 12.

    Mohammadi, A., Rezvani, M. H., Optimization of Virtual Machines Placement Based on Microeconomics Theory. KBEI’17, in Cloud Network, In: Proceedings of 4th IEEE International Conference on Knowledge-Based Engineering and Innovation, pp. 299–303, Tehran (2017)

  13. 13.

    Campos-Ciro, G., Dugardin, F., Yalaoui, F., Kelly, R.F.: A NSGA-II and NSGA-III comparison for solving an open shop scheduling problem with resource constraints. IFAC-PapersOnLine 49, 1272–1277 (2016)

  14. 14.

    Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R.: CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw. Pract. Exp. J. 41(1), 23–50 (2011)

  15. 15.

    Vahed, N.D., Ghobaei-Arani, M., Souri, A.: Multiobjective virtual machine placement mechanisms using nature-inspired metaheuristic algorithms in cloud environments: a comprehensive review. Int. J. Commun Syst (2019). https://doi.org/10.1002/dac.4068

  16. 16.

    Ismail, L., Materwala, H.: Energy-aware VM placement and task scheduling in cloud-IoT computing: classification and performance evaluation. IEEE Internet Things J. 5(6), 5166–5176 (2018). https://doi.org/10.1109/JIOT.2018.2865612

  17. 17.

    Attaoui, W., Sabir, E.: Multi-criteria virtual machine placement in cloud computing environments: a literature review (2018). arXiv:abs/1802.05113

  18. 18.

    Li, H., Deb, K., Zhang, Q., NagaratnamSuganthan, P., Chen, L.: Comparison between MOEA/D and NSGA-III on a set of novel many and multi-objective benchmark problems with challenging difficulties. Swarm Evolut. Comput. 46, 104–117 (2019)

  19. 19.

    Liao, D., Sun, G., Yang, G., Chang, V.: Energy-efficient virtual content distribution network provisioning in cloud-based data centers. Future Gen. Comput. Syst. 83, 347–357 (2018). https://doi.org/10.1016/j.future.2018.01.057

  20. 20.

    Vinueza Naranjo, P.G., Baccarelli, E., Scarpiniti, M.: Design and energy-efficient resource management of virtualized networked fog architectures for the real-time support of IOT applications. J. Supercomput. 74(6), 2470–2507 (2018)

  21. 21.

    Shelar, M., Sane, S., Kharat, V.: A novel energy efficient and SLA-aware approach for cloud resource management. Int. J. Grid High Perform. Comput. (IJGHPC) (2019). https://doi.org/10.4018/ijghpc.2019040104

  22. 22.

    Shen, C., Xue, S., Fu, S.J.: ECPM: an energy-efficient cloudlet placement method in mobile cloud environment. Wireless Commun. Netw. 2019, 141 (2019). https://doi.org/10.1186/s13638-019-1455-8

  23. 23.

    Ammar, A.-M., Luo, J., Tang, Z., Wajdy, O.: Intra-balance virtual machine placement for effective reduction in energy consumption and SLA violation. IEEE Access 7, 72387–72402 (2019). https://doi.org/10.1109/ACCESS.2019.2920010

  24. 24.

    Barthwal, V., Rauthan, M., Verma, R.: Virtual machines placement using predicted utilization of physical machine in cloud datacenter (2019). Available at SSRN: https://ssrn.com/abstract=3394104

  25. 25.

    Varasteh, A., De Andrade, M., Machuca, C.M., Wosinska, L., Kellerer, W.: Power-aware virtual network function placement and routing using an abstraction technique. In: Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM) (2018). https://doi.org/10.1109/glocom.2018.8647538

  26. 26.

    Gupta, M.K., Amgoth, T.: Resource-aware virtual machine placement algorithm for IaaS cloud. J. Supercomput. 74, 122 (2018). https://doi.org/10.1007/s11227-017-2112-9

  27. 27.

    Garg, N., Singh, D., Goraya, M.S.: Power and resource-aware VM placement in cloud environment. In: Proceedings of the 2018 IEEE 8th International Advance Computing Conference (IACC), 14–15 December 2018 (2018). https://doi.org/10.1109/iadcc.2018.8692118

  28. 28.

    Witanto, J.N., Lim, H., Atiquzzaman, M.: Adaptive selection of dynamic VM consolidation algorithm using neural network for cloud resource management. Future Gen. Comput. Syst. 87, 35–42 (2018). https://doi.org/10.1016/j.future.2018.04.075

  29. 29.

    Hejja, K., Hesselbach, X.: Online power aware coordinated virtual network embedding with 5G delay constraint. J. Netw. Comput. Appl. 124(15), 121–136 (2018). https://doi.org/10.1016/j.jnca.2018.10.005

  30. 30.

    Zhou, Z., Abawajy, J., Chowdhury, M., Zhigang, H., Li, K., Cheng, H., Alelaiwi, A.A., Li, F.: Minimizing SLA violation and power consumption in Cloud data centers using adaptive energy-aware algorithms. Future Gen. Comput. Syst. 86, 836–850 (2018). https://doi.org/10.1016/j.future.2017.07.048

  31. 31.

    Adamuthe, A.C., Patil, J.T.: Differential evolution algorithm for optimizing virtual machine placement problem in cloud computing. Int. J. Intell. Syst. Appl. 7, 58–65 (2018). https://doi.org/10.5815/ijisa.2018.07.06

  32. 32.

    Farshin, A., Sharifian, S.: A modified knowledge-based ant colony algorithm for virtual machine placement and simultaneous routing of NFV in distributed cloud architecture. J. Supercomput. (2019). https://doi.org/10.1007/s11227-019-02804-x

  33. 33.

    Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

  34. 34.

    Tavana, M., Li, Z., Mobin, M., Komaki, M., Teymourian, E.: Multi-objective control chart design optimization using NSGA-III and MOPSO enhanced with DEA and TOPSIS. Expert Syst. Appl. 50, 17–39 (2016)

  35. 35.

    Al-Quzweeni, A.N., Lawey, A.Q., Elgorashi, T.E.H., Elmirghani, J.M.H.: Optimized energy aware 5G network function virtualization. IEEE Access 7, 44939–44958 (2019). https://doi.org/10.1109/access.2019.2907798

  36. 36.

    Deb, K., Fellow, Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based non-dominated sorting approach. Part I: Solving problems with box constraints. 18(4) (2014)

  37. 37.

    Ishibuchi, H., Imada, R., Setoguchi, Y., Nojima, Y.: Performance comparison of NSGA-II and NSGA-III on various many-objective test problems. In: Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 3045–3052 (2016)

  38. 38.

    Bermejo, B., Juiz, C., Guerrero, C.: Virtualization and consolidation: a systematic review of the past 10 years of research on energy and performance. J. Supercomput. 75(2), 808–836 (2019). https://doi.org/10.1007/s11227-018-2613-1

  39. 39.

    Kar, B., Wu, E.H.-K.: Energy cost optimization in dynamic placement of virtualized network function chains. IEEE Trans. Netw. Serv. Manag. 15(1), 372–386 (2018)

  40. 40.

    Gao, Y., Guan, H., Qi, Z., Hou, Y., Liu, L.: A multi-objective ant colony system algorithm for virtual machine placement in cloud computing. J. Comput. Syst. Sci. 79, 1230–1242 (2013)

  41. 41.

    Donoso, Y., Fabregat, R.: Multi-Objective Optimization in Computer Networks Using Metaheuristics, 1st edn. Auerbach Publications, London (2007)

  42. 42.

    Lotov, A.V., Miettinen, K.: Visualizing the Pareto Frontier, pp. 213–243, In: Multiobjective Optimization, Interactive and Evolutionary Approaches, Lecture Notes in Computer Science 5252, Springer (2008). ISBN 978-3-540-88907-6

  43. 43.

    JOM (Java Optimization Modeler). http://www.net2plan.com/jom/

  44. 44.

    Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors. J. Assoc. Comput. Mach. 22(4), 469–476 (1975)

  45. 45.

    Fisher, G.G.: Work/personal life balance: a construct development study, Doctoral Dissertation, ProQuest Information & Learning (2002)

Download references

Author information

Correspondence to Mohammad Hossein Rezvani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Parvizi, E., Rezvani, M.H. Utilization-aware energy-efficient virtual machine placement in cloud networks using NSGA-III meta-heuristic approach. Cluster Comput (2020). https://doi.org/10.1007/s10586-020-03060-y

Download citation

Keywords

  • Virtual machine placement (VMP)
  • Energy consumption
  • Multi-objective optimization
  • Meta-heuristic method
  • Non-dominated sorting genetic algorithm (NSGA-III)