Advertisement

SPeCECA: a smart pervasive chatbot for emergency case assistance based on cloud computing

  • Nourchène OuerhaniEmail author
  • Ahmed Maalel
  • Henda Ben Ghézela
Article
  • 25 Downloads

Abstract

The terrible cost of injuries and sudden illnesses does have fatal consequences that exposes the limitations of the current prehospital processes in terms of time for emergency staff to arrive on scene and lack of first aid skills among the available incident witnesses. In this paper we aim at developing a smart pervasive chatbot for emergency case assistance based on cloud computing called SPeCECA that assists victims or incident witnesses to help avoiding deterioration of the subject’s condition and maintaining his/her physical integrity until the aid arrives, which could dramatically increase the victim’s survivability chances. Therefore, even a person with no first aid skills, can help the victim to survive by performing first aid support as suggested by the virtual assistant. Furthermore, thanks to its connectivity with the emergency medical service, trusted person(s), and the access to social media, SPeCECA has its own way of alarming the emergency case, in parallel, after having released the degree of the emergency situation’s severity. The proposed method is a mobile pervasive healthcare service in the form of a connected mobile application as a virtual assistant for the benefit of anyone facing an emergency case. The proposed chatbot allows an online human-bot interaction that supports different scenarios for every single emergency case. The design of the system is introduced by its six interdependent components: information pre-processing component (IPPC), natural language processing component (NLPC), context component (CC), information post-processing component (IPoPC), response generator component (RGC), and alert message constructor component (AMCC).

Keywords

Chatbot Emergency First aid Machine learning Pervasive health Smart health 

Notes

References

  1. 1.
    Söderström, E., van Laere, J., Backlund, P., Söderholm, H.M. , editor=“Johansson, Björn and Andersson, Bo and Holmberg, Nicklas: Combining Work Process Models to Identify Training Needs in the Prehospital Care Process, Perspectives in Business Informatics Research, 375–389, Springer International Publishing (2014)Google Scholar
  2. 2.
    Whittaker, Joshua, McLennan, Blythe, Handmer, John: A review of informal volunteerism in emergencies and disasters: definition, opportunities and challenges. Int. J. Disaster Risk Reduct. 13, 358–368 (2015).  https://doi.org/10.1016/j.ijdrr.2015.07.010 CrossRefGoogle Scholar
  3. 3.
    Pellegrino, J., Oliver, E., Orkin, A., Marentette, D., Snobelen, P., Muise, J., Mulligan, J., De Buck, E.: A call for revolution in first aid education. Int. J. First Aid Educ. 1, 5 (2017).  https://doi.org/10.21038/ijfa.2017.0001 CrossRefGoogle Scholar
  4. 4.
    Varshney, Upkar: Pervasive healthcare and wireless health monitoring. Mobile Netw. Appl. 12, 113–127 (2007).  https://doi.org/10.1007/s11036-007-0017-1 CrossRefGoogle Scholar
  5. 5.
    Penmatsa, P.L., Rama Kkoti Reddy, D.V.: Smart Detection and Transmission of Abnormalities in ECG via Bluetooth, 2016 IEEE International Conference on Smart Cloud (SmartCloud), 41-44 (2016)Google Scholar
  6. 6.
    Weizenbaum, J.: ELIZA&Mdash;a Computer Program for the Study of Natural Language Communication Between Man and Machine, Commun. ACM, Vol. 9, pp. 36–45, ACM, New York (1966).  https://doi.org/10.1145/365153.365168
  7. 7.
    Ni, L., Lu, C., Liu, N., Liu, J.: MANDY: towards a smart primary care Chatbot application. In: International Symposium on Knowledge and Systems Sciences, pp. 38–52 (2017). Springer, Singapore,  https://doi.org/10.1007/978-981-10-6989-5_4 Google Scholar
  8. 8.
    Amato, F., Marrone, S., Moscato, V., Piantadosi, G., Picariello, A., Sansone, C.: Chatbots Meet eHealth: Automatizing Healthcare (2017)Google Scholar
  9. 9.
    Korzun, D.G., Borodin, A.V., Timofeev, I.A., Paramonov, I.V., Balandin, S.I.: Digital assistance services for emergency situations in personalized mobile healthcare: Smart space based approach, In: Proceedings of the 2015 International Conference on Biomedical Engineering and Computational Technologies (SIBIRCON), 62–67 (2015).  https://doi.org/10.1109/SIBIRCON.2015.7361852
  10. 10.
    Chung, K., Park, R.: Chatbot-based heathcare service with a knowledge base for cloud computing. Clust. Comput. (2018).  https://doi.org/10.1007/s10586-018-2334-5 CrossRefGoogle Scholar
  11. 11.
    Tsai, M.-H., Chen, J.Y., Kang, S.-C.: Ask Diana: A Keyword-Based Chatbot System for Water-Related Disaster Management. Water 11, 234 (2019).  https://doi.org/10.3390/w11020234 CrossRefGoogle Scholar
  12. 12.
    Paredes, H., Fonseca, B., Cabo, M., Pereira, T., Fernandes, F.: SOSPhone: a mobile application for emergency calls. Univ. Access Inf. Soc. 13, 277–290 (2014).  https://doi.org/10.1007/s10209-013-0318-z CrossRefGoogle Scholar
  13. 13.
    Toahchoodee, M.: ARSA-the pervasive Rescuer Supporting System for the Pre-hospital Emergency Medical Service, In: Proceedings of the 2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE), 1–6 (2007).  https://doi.org/10.1109/JCSSE.2017.8025920
  14. 14.
    Srivastava, M., Suvarna, S., Srivastava, A., Bharathiraja, S.: Automated emergency paramedical response system. Health Inf. Sci. Syst. 6, 22 (2018).  https://doi.org/10.1007/s13755-018-0061-1 CrossRefGoogle Scholar
  15. 15.
    Mohammed, Mohssen, Khan, M.B., Bashier, E.B.M.: Machine Learning: Algorithms and Applications. CRC Press, Boca Raton (2016)CrossRefGoogle Scholar
  16. 16.
    Zhang, Y., Gong, B., Shah, M.: Fast Zero-Shot Image Tagging, CoRR, abs/1605.09759 (2016). arxiv: abs/1605.09759
  17. 17.
    Webster, J.J., Kit, C.: TOKENIZATION AS THE INITIAL PHASE IN NLP, COLING 1992 Volume 4: The 15th International Conference on Computational Linguistics (1992) http://www.aclweb.org/anthology/C92-4173
  18. 18.
    Kumar, D., Josan, G.S.: Part of speech taggers for morphologically rich Indian languages: a survey. J. Comput. Appl. 6(5), 32–41 (2010)Google Scholar
  19. 19.
    Eger, S., Gleim, R., Mehler, A.: Lemmatization and Morphological Tagging in German and Latin: A Comparison and a Survey of the State-of-the-art, LREC (2016)Google Scholar
  20. 20.
    Mikolov, T., Chen, K., Corrado,G., Dean, J.: Efficient Estimation of Word Representations in Vector Space, CoRR, abs/1301.3781, (2013). arxiv: abs/1301.3781
  21. 21.
    Pennington, J., Socher, R., Manning, C.: Glove: Global Vectors for Word Representation, In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1532–1543, Association for Computational Linguistics, Doha, Qatar (2014)  https://doi.org/10.3115/v1/D14-1162, http://aclweb.org/anthology/D14-1162
  22. 22.
    Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching Word Vectors with Subword Information, CoRR, abs/1607.04606 (2016) arXiv:abs/1607.04606
  23. 23.
    Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of Tricks for Efficient Text Classification, CoRR, abs/1607.01759 (2016) arxiv: abs/1607.01759
  24. 24.
    Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, CoRR, abs/1810.04805 (2018). arxiv: abs/1810.04805
  25. 25.
    Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data, In: Proceedings of the Eighteenth International Conference on Machine Learning, 282–289, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2001). http://dl.acm.org/citation.cfm?id=645530.655813
  26. 26.
    Chang, C.-C., Lin, Chih-Jen: LIBSVM: A library for support vector machines. ACM TIST 2, 27:1–27:27 (2011)Google Scholar
  27. 27.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., San Francisco (1993)Google Scholar
  28. 28.
    Zhang, Y., Chen, M., Huang, D., Di, W., Li, Y.: iDoctor: Personalized and professionalized medical recommendations based on hybrid matrix factorization. Futur. Gener. Comput. Syst. 66, 30–35 (2017).  https://doi.org/10.1016/j.future.2015.12.001 CrossRefGoogle Scholar
  29. 29.
    Tivatansakul, S., Ohkura, M., Puangpontip, S., Achalakul, T.: Emotional healthcare system: Emotion detection by facial expressions using Japanese database, 2014 6th Computer Science and Electronic Engineering Conference, CEEC 2014—Conference Proceedings, pp. 41–46 (2014).  https://doi.org/10.1109/CEEC.2014.6958552
  30. 30.
    Hossain, M.S., Muhammad, G.: An emotion recognition system for mobile applications. IEEE Access 5, 2281–2287 (2017).  https://doi.org/10.1109/ACCESS.2017.2672829 CrossRefGoogle Scholar
  31. 31.
    Bennani, S., Maalel, A., Ghézala, H.B., Abed, M.: Towards a decision support model for the resolution of episodic problems based on ontology and case bases reasoning: application to terrorism attacks. In: IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), Hammamet, pp. 1502–1509 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Nourchène Ouerhani
    • 1
    • 2
    Email author
  • Ahmed Maalel
    • 1
    • 2
  • Henda Ben Ghézela
    • 2
  1. 1.Higher Institute of Applied Sciences and TechnologyUniversity of SousseSousseTunisia
  2. 2.RIADI Laboratory, National School of Computer SciencesUniversity of ManoubaManoubaTunisia

Personalised recommendations