Advertisement

Expertise-aware news feed updates recommendation: a random forest approach

  • Sami BelkacemEmail author
  • Kamel Boukhalfa
  • Omar Boussaid
Article
  • 10 Downloads

Abstract

With social media being widely used around the world, and because of the large amount of data, users are overcome by updates displayed chronologically in their news feed. Furthermore, most updates are considered irrelevant. To help beneficiary users quickly catch up with the relevant content, ranking news feed updates in descending relevance order has been achieved based on the prediction of a relevance score between a beneficiary and a new update in the news feed. Four types of features are generally used to predict the relevance: (1) the relevance of the update content to the beneficiary’s interests; (2) the social tie strength between the beneficiary and the update’s author; (3) the author’s authority; and (4) the update quality. In this work, from the biography and the textual content posted, we propose an approach that infers and uses another type of feature which is the expertise of the update’s author for the corresponding topic. Following extensive experiments on a real dataset crawled from Twitter, the results show that infer the author’s expertise is critical for identifying relevant updates in news feeds.

Keywords

Social media News feed updates Relevance Ranking Expertise Twitter 

Notes

References

  1. 1.
    Jin, S., Lin, W., Yin, H., Yang, S., Li, A., Deng, B.: Community structure mining in big data social media networks with MapReduce. Clust. Comput. 18(3), 999–1010 (2015)CrossRefGoogle Scholar
  2. 2.
    Xu, Z., Liu, Y., Yen, N., Mei, L., Luo, X., Wei, X., Hu, C.: Crowdsourcing based description of Urban emergency events using social media big data. In: IEEE Transactions on Cloud Computing, p. 1 (2016)Google Scholar
  3. 3.
    Srividya, M., Irfan Ahmed, M.S.: A filtering of message in online social network using hybrid classifier. Clust. Comput. (2017).  https://doi.org/10.1007/s10586-017-1300-y CrossRefGoogle Scholar
  4. 4.
    Arularasan, A.N., Suresh, A., Seerangan, K.: Identification and classification of best spreader in the domain of interest over the social networks. Clust. Comput. 22, 4035–4045 (2018)CrossRefGoogle Scholar
  5. 5.
    Bontcheva, K., Gorrell, G., Wessels, B.: Social media and information overload: survey results. arXiv preprint arXiv:1306.0813 (2013)
  6. 6.
    Vougioukas, M., Androutsopoulos, I., Paliouras, G.: Identifying Retweetable Tweets with a Personalized Global Classifier. CoRR. abs/1709.06518 (2017)Google Scholar
  7. 7.
    Ramage, D., Dumais, S.T., Liebling, D.J.: Characterizing microblogs with topic models. ICWSM 10(1), 16 (2010)Google Scholar
  8. 8.
    Kuang, L., Tang, X., Yu, M., Huang, Y., Guo, K.: A comprehensive ranking model for tweets big data in online social network. EURASIP J. Wirel. Commun. Netw. 2016(1), 46 (2016)CrossRefGoogle Scholar
  9. 9.
    Agarwal, D., Zhang, L., Chen, B.-C., He, Q., Hua, Z., Lebanon, G., Ma, Y., Shivaswamy, P., Tseng, H.-P., Yang, J.: Personalizing LinkedIn Feed, pp. 1651–1660. ACM Press, New York (2015)Google Scholar
  10. 10.
    Belkacem, S., Boukhalfa, K., Boussaid, O.: News feeds triage on social networks: a survey. In: Proceedings of The 2nd International Conference on Computing Systems and Applications (CSA), pp. 34–43 (2016)Google Scholar
  11. 11.
    Alp, Z.Z., Öğüdücü, G.: Identifying topical influencers on twitter based on user behavior and network topology. Knowl. Based Syst. 141, 211–221 (2018)CrossRefGoogle Scholar
  12. 12.
    Pal, A., Herdagdelen, A., Chatterji, A., Taank, S., Chakrabarti, D.: Discovery of Topical Authorities in Instagram, pp. 1203–1213. ACM Press, New York (2016)Google Scholar
  13. 13.
    Wagner, C., Liao, V., Pirolli, P., Nelson, L., Strohmaier, M.: It’s Not in their Tweets: Modeling Topical Expertise of Twitter Users, pp. 91–100. IEEE, Washington (2012)Google Scholar
  14. 14.
    Yu, X., Dong, Z., Lawless, S.: Inferring Your Expertise from Twitter: Combining Multiple Types of User Activity, pp. 589–598. ACM Press, New York (2017)Google Scholar
  15. 15.
    Wei, W., Cong, G., Miao, C., Zhu, F., Li, G.: Learning to find topic experts in Twitter via different relations. IEEE Trans. Knowl. Data Eng. 28(7), 1764–1778 (2016)CrossRefGoogle Scholar
  16. 16.
    Li, X., Cheng, S., Chen, W., Jiang, F.: Novel user influence measurement based on user interaction in microblog. In: 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 615–619. IEEE (2013)Google Scholar
  17. 17.
    Belkacem, S., Boukhalfa, K., Boussaid, O.: Leveraging expertise in news feeds: a Twitter case study. In: Journées francophones sur les Entrepôts de Données et l’Analyse en ligne (EDA), vol. 14, pp. 1–16. Revue des Nouvelles Technologies de l’Information (2018)Google Scholar
  18. 18.
    Berkovsky, S., Freyne, J.: Personalised network activity feeds: finding needles in the haystacks. In: Atzmueller, M., Chin, A., Scholz, C., Trattner, C. (eds.) Mining. Modeling, and Recommending ’Things’ in Social Media, vol. 8940, pp. 21–34. Springer, Cham (2015)Google Scholar
  19. 19.
    Gligoric, K., Anderson, A., West, R.: How Constraints Affect Content: The Case of Twitter’s Switch from 140 to 280 Characters. arXiv preprint arXiv:1804.02318 (2018)
  20. 20.
    Nguyen, T.-T., Nguyen, T.-T., Ha, Q.-T.: Applying Hidden Topics in Ranking Social Update Streams on Twitter, pp. 180–185. IEEE, Washington (2013)Google Scholar
  21. 21.
    Shen, K., Jianmin, W., Zhang, Y., Han, Y., Yang, X., Song, L., Xiao, G.: Reorder user’s tweets. ACM Trans. Intell. Syst. Technol. 4(1), 1–17 (2013)CrossRefGoogle Scholar
  22. 22.
    De Maio, C., Fenza, G., Gallo, M., Loia, V., Parente, M.: Time-aware adaptive tweets ranking through deep learning. Future Gen. Comput. Syst. (2017).  https://doi.org/10.1016/j.future.2017.07.039 CrossRefGoogle Scholar
  23. 23.
    Feng, W., Wang, J.: Retweet or Not?: Personalized Tweet Re-ranking, p. 577. ACM Press, New York (2013)Google Scholar
  24. 24.
    Belkacem, S., Boukhalfa, K., Boussaid, O.: Tri des actualités sociales: Etat de l’art et Pistes de recherche. In: Journées francophones sur les Entrepôts de Données et l’Analyse en ligne (EDA), vol. 13, pp. 85–100. Revue des Nouvelles Technologies de l’Information (2017)Google Scholar
  25. 25.
    Chen, K., Chen, T., Zheng, G., Jin, O., Yao, E., Yu, Y.: Collaborative Personalized Tweet Recommendation, p. 661. ACM Press, New York (2012)Google Scholar
  26. 26.
    Zheng, Z., Chen, K., Sun, G., Zha, H.: A Regression Framework for Learning Ranking Functions Using Relative Relevance Judgments, p. 287. ACM Press, New York (2007)Google Scholar
  27. 27.
    Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of Machine Learning. MIT Press, Cambridge (2012)zbMATHGoogle Scholar
  28. 28.
    Nagmoti, R., Teredesai, A., De Cock, M.: Ranking Approaches for Microblog Search, pp. 153–157. IEEE, Washington (2010)Google Scholar
  29. 29.
    Martín-Vicente, M.I., Gil-Solla, A., Ramos-Cabrer, M., Blanco-Fernàndez, Y., López-Nores, M.: Semantic inference of user’s reputation and expertise to improve collaborative recommendations. Expert Syst. Appl. 39(9), 8248–8258 (2012)CrossRefGoogle Scholar
  30. 30.
    Liao, Q.V., Wagner, C., Pirolli, P., Fu, W.-T.: Understanding Experts’ and Novices’ Expertise Judgment of Twitter Users, p. 2461. ACM Press, New York (2012)Google Scholar
  31. 31.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)CrossRefGoogle Scholar
  32. 32.
    Kapanipathi, P., Jain, P., Venkataramani, C., Sheth, A.: User interests identification on Twitter using a hierarchical knowledge base. In: Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J.M., Kobsa, A., Mattern, F., Mitchell, J.C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Steffen, B., Terzopoulos, D., Tygar, D., Weikum, G., Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) The Semantic Web: Trends and Challenges, vol. 8465, pp. 99–113. Springer, Cham (2014)CrossRefGoogle Scholar
  33. 33.
    Xu, Y., Zhou, D., Lawless, S.: Inferring Your Expertise from Twitter: Integrating Sentiment and Topic Relatedness, pp. 121–128. IEEE, Washington (2016)Google Scholar
  34. 34.
    Pan, Y., Cong, F., Chen, K., Yu, Y.: Diffusion-Aware Personalized Social Update Recommendation, pp. 69–76. ACM Press, New York (2013)Google Scholar
  35. 35.
    Duan, Y., Jiang, L., Qin, T., Zhou, M., Shum, H.-Y.: An empirical study on learning to rank of tweets. In: Proceedings of the 23rd International Conference on Computational Linguistics, pp. 295–303. Association for Computational Linguistics (2010)Google Scholar
  36. 36.
    Uysal, I., Croft, W.B.: User Oriented Tweet Ranking: A Filtering Approach to Microblogs, p. 2261. ACM Press, New York (2011)Google Scholar
  37. 37.
    Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. CRC Press, Boca Raton (1984)zbMATHGoogle Scholar
  38. 38.
    Biau, G., Scornet, E.: A random forest guided tour. TEST 25(2), 197–227 (2016)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Breiman, L., Cutler, A.: Random forests-classification description: random forests. www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm (2007). Accessed 20 Sept 2017
  40. 40.
    Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 832–844 (1998)CrossRefGoogle Scholar
  41. 41.
    Malekipirbazari, M., Aksakalli, V.: Risk assessment in social lending via random forests. Expert Syst. Appl. 42(10), 4621–4631 (2015)CrossRefGoogle Scholar
  42. 42.
    Khan, R., Hanbury, A., Stoettinger, J.: Skin Detection: A Random Forest Approach, pp. 4613–4616. IEEE, Washington (2010)Google Scholar
  43. 43.
    Färber, M., Ell, B., Menne, C., Rettinger, A.: A comparative survey of dbpedia, freebase, opencyc, wikidata, and yago. Semant. Web J. 1, 1–5 (2015)Google Scholar
  44. 44.
    Sammut, C., Webb, G.I.: Encyclopedia of Machine Learning. Springer, Berlin (2011)zbMATHGoogle Scholar
  45. 45.
    Ester, M.: Recommendation in social networks. In: RecSys, pp. 491–492 (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.LSI laboratoryUSTHBAlgiersAlgeria
  2. 2.ERIC laboratoryUniversity Lyon 2LyonFrance

Personalised recommendations