Advertisement

WODII: a solution to process SPARQL queries over distributed data sources

  • Ahmed RabhiEmail author
  • Rachida Fissoune
Article
  • 9 Downloads

Abstract

The web of data can be seen as a distributed environment hosting structured and linked data based on Semantic Web standards. This is one of the promising features for Semantic Web developers who would benefit from having the possibility to remotely access different RDF repositories, available on the web, in order to collect fragments of information from several sources and combine the resulting parts in an integrated answer. In this paper, we propose an index-based solution, Web of Data Information Integrator (WoDII), to process SPARQL queries over independent data sources without having a prior knowledge of the sources contributing to the answer. By relying on an index, the system avoids non-relevant sources and maps each selected source to a cluster of sub-queries, as a result, network traffic decreases, making the process less dependent on the quality of the connection flow.

Keywords

SPARQL Web of data Aggregated search Ontology-based data access 

Notes

References

  1. 1.
    Akar, Z., Halaç, T.G., Ekinci, E.E., Dikenelli, O.: Querying the web of interlinked datasets using void descriptions. LDOW 937 (2012)Google Scholar
  2. 2.
    Bagosi, T., Calvanese, D., Hardi, J., Komla-Ebri, S., Lanti, D., Rezk, M., Rodríguez-Muro, M., Slusnys, M., Xiao, G.: The ontop framework for ontology based data access. In: Chinese Semantic Web and Web Science Conference, pp. 67–77. Springer, Berlin (2014)Google Scholar
  3. 3.
    Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM. 13(7), 422–426 (1970)CrossRefGoogle Scholar
  4. 4.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R., Ruberti, G.A.: Ontology-based data access and integration (2017)Google Scholar
  5. 5.
    Cosmin Basca, A.B.: Querying a messy web of data with avalanche. J. Web Semant. 26, 1–28 (2014)CrossRefGoogle Scholar
  6. 6.
    De Giacomo, G., Lembo, D., Oriol, X., Savo, D.F., Teniente, E.: Practical update management in ontology-based data access. In: International Semantic Web Conference, pp. 225–242. Springer, Cham (2017)Google Scholar
  7. 7.
    Echbarthi, G., Kheddouci, H.: A graph matching approach based on aggregated search. In: 13th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), pp. 376–379. IEEE (2017)Google Scholar
  8. 8.
    Görlitz, O., Staab, S.: Splendid: Sparql endpoint federation exploiting void descriptions. Proc. Second Int. Conf. Consum. Linked Data 782, 3–24 (2011)Google Scholar
  9. 9.
    Grubenmann, T., Bernstein, A., Moor, D., Seuken, S.: Challenges of source selection in the wod. In: International Semantic Web Conference, pp. 313-328. Springer, Cham (2017)Google Scholar
  10. 10.
    Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space. Morgan & Claypool publishers, San Rafael (2011)Google Scholar
  11. 11.
    Kharlamov, E., Hovland, D., Jiménez-Ruiz, E., Lanti, D., Lie, H., Pinkel, C., Rezk, M., Skjæveland, M.G., Thorstensen, E., Xiao, G., et al.: Ontology based access to exploration data at statoil. ISWC, pp. 93–112 (2015)Google Scholar
  12. 12.
    Kogalovsky, M.R.: Ontology-based data access systems. Programm. Comput. Softw. 38(4), 167–182 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Quilitz, B., Leser, U.: Querying distributed rdf data sources with sparql. European Semantic Web Conference (ESWC), pp. 524–538. Springer, Heidelberg (2008)Google Scholar
  14. 14.
    Rabhi, A., Ouederrou, S., Fissoune, R., Badir, H.: A multi-tiered system for querying the web of data. EDA Conference (2018)Google Scholar
  15. 15.
    Saleem, M., Ngomo, A.-C. N.: Hibiscus: Hypergraph-based source selection for sparql endpoint federation. In: European Semantic Web Conference, pp. 176–191. Springer, Cham (2014)Google Scholar
  16. 16.
    Saleem, M., Ngomo, A.-C.N., Parreira, J.X., Deus, H.F., Hauswirth, M.: Daw: Duplicate-aware federated query processing over the web of data. ISWC, pp. 574–590 (2013)Google Scholar
  17. 17.
    Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: Fedx: Optimization techniques for federated query processing on linked data. In: International Semantic Web Conference, pp. 601–616. Springer, Berlin (2011)CrossRefGoogle Scholar
  18. 18.
    Sushmita, S., Joho, H., Lalmas, M., Villa, R.: Factors affecting click-through behavior in aggregated search interfaces. Proceedings of the 19th ACM international conference on Information and knowledge management, pp. 519–528 (2010)Google Scholar
  19. 19.
    Wang, X., Tiropanis, T., Davis, H.C.: Lhd: Optimising linked data query processing using parallelisation (2013)Google Scholar
  20. 20.
    Echbarthi, G., Kheddouci, H.: A Graph Matching Approach Based on Aggregated Search. 2017 13th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), pp. 376–379 (2017)Google Scholar
  21. 21.
    Baader, F., Bienvenu, M., Lutz, C., Wolter, F.: Query and predicate emptiness in ontology-based data access. J. Artif. Intell. Res. 56, 1–59 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.ENSA of Tangier Abdelmalek Essaadi UniversityTangierMorocco

Personalised recommendations