Advertisement

Network adapter architectures in network on chip: comprehensive literature review

  • Babak AghaeiEmail author
  • Midia Reshadi
  • Mohammad Masdari
  • Seyed Hadi Sajadi
  • Mehdi Hosseinzadeh
  • Aso Darwesh
Article
  • 11 Downloads

Abstract

Network on Chip (NoC) is a new distributed, scalable, packet switched-based on chip which has been suggested as perfect solution for traditional centralized, non-scalable bus-based systems on chip (SoC) to handle issues like out-of order transactions, higher latencies, and end-to-end flow control. The NoC provides parallel and multi-core processing platform and is constructed from a set of Routers (R), Links (L), Intellectual Property (IP) cores, and Network Adapters (NA). The NA as individual hardware entity makes it possible IP cores with different data width and frequency connected to NoC. In other words, by decoupling computation from communication the NA allows IP Core modules and interconnects to be designed independently from each other. The design of NA impacts directly on NoC based SoCs critical parameters such as power dissipation, latency, throughput, and silicon area. This paper presents the comprehensive review of state-of-the-art architectures and the developments of NA which have been proposed in literature. Moreover, three type of parameters namely design (design goal, building components, Quality of Service (QoS), Core Interface Protocol (CIP), Security consideration, and Design for Test (DfT)), performance (power dissipation, latency, area, and throughput), and evaluation parameters (evaluation platform, clock frequency, technology scale) which have impact on NA architectures are evaluated and highlighted in comparative tables and figures. Furthermore, all the concepts that are considered in the design of NA is classified. Finally, concluding remarks and future research direction are provided.

Keywords

Network on chip Network adapters Core interface Network interface Comprehensive review 

Notes

References

  1. 1.
    Chang, K.-C., Shen, J.-S., Chen, T.-F.: Evaluation and design trade-offs between circuit-switched and packet-switched NOCs for application-specific SOCs. In: Proceedings of the 43rd annual Design Automation Conference, ACM, pp. 143–148 (2006)Google Scholar
  2. 2.
    Pasricha, S., Dutt, N.: On-chip communication architectures: system on chip interconnect. Morgan Kaufmann, Burlington (2010)Google Scholar
  3. 3.
    Zeferino, C.A., Kreutz, M.E., Carro, L., Susin, A.A.: A study on communication issues for systems-on-chip. In: Integrated Circuits and Systems Design, 2002. In: Proceedings of the 15th Symposium, IEEE, pp. 121–126 (2002)Google Scholar
  4. 4.
    Liang, J., Swaminathan, S., Tessier, R.: aSOC: a scalable, single-chip communications architecture. In: Parallel Architectures and Compilation Techniques, 2000. In: Proceedings of the International Conference, IEEE, pp. 37–46 (2000)Google Scholar
  5. 5.
    Dehyadgari, M., Nickray, M., Afzali-Kusha, A., Navabi, Z.: A new protocol stack model for network on chip. In: Proceeding of the IEEE Computer Society Annual Symposium Emerging VLSI Technologies and Architectures, IEEE, p. 3 (2006)Google Scholar
  6. 6.
    Agarwal, A., Iskander, C., Shankar, R.: Survey of network on chip (noc) architectures & contributions. J. Eng. Comput. Archit. 3(1), 21–27 (2009)Google Scholar
  7. 7.
    De Micheli, G., Benini, L.: Networks on chip: a new paradigm for systems on chip design. In: Proceeding of the IEEE Computer Society on Design, Automation & Test in Europe Conference & Exhibition, pp. 0418–0418 (2002)Google Scholar
  8. 8.
    Tatas, K., Siozios, K., Soudris, D., Jantsch, A.: Designing 2D and 3D network-on-chip architectures. Springer, New York (2014)CrossRefGoogle Scholar
  9. 9.
    Benini, L., De Micheli, G.: Networks on chips: a new SoC paradigm. Computer 35(1), 70–78 (2002)CrossRefGoogle Scholar
  10. 10.
    Grecu, C., Ivanov, A., Saleh, R., De Micheli, G.: Design, synthesis, and test of networks on chips. (2005)Google Scholar
  11. 11.
    De Micheli, G., Benini, L.: Networks on chips: technology and tools. Academic Press, Cambridge (2006)Google Scholar
  12. 12.
    Poluri, P., Louri, A.: A Soft Error Tolerant Network-on-Chip Router Pipeline for Multi-core SystemsGoogle Scholar
  13. 13.
    Kumar, S., Jantsch, A., Soininen, J.-P., Forsell, M., Millberg, M., Oberg, J., Tiensyrja, K., Hemani, A.: A network on chip architecture and design methodology. In: VLSI, 2002. In: Proceedings of the IEEE Computer Society Annual Symposium, IEEE, pp. 105–112 (2002)Google Scholar
  14. 14.
    Jantsch, A., Tenhunen, H.: Networks on chip, vol. 396. Springer, New York (2003)CrossRefzbMATHGoogle Scholar
  15. 15.
    Goossens, K., Dielissen, J., van Meerbergen, J., Poplavko, P., Rădulescu, A., Rijpkema, E., Waterlander, E., Wielage, P.: Guaranteeing the quality of services in networks on chip. In: Networks on chip. pp. 61-82. Springer, (2003)Google Scholar
  16. 16.
    Bjerregaard, T., Mahadevan, S.: A survey of research and practices of network-on-chip. ACM Comput. Surv. (CSUR) 38(1), 1 (2006)CrossRefGoogle Scholar
  17. 17.
    Hemani, A., Jantsch, A., Kumar, S., Postula, A., Oberg, J., Millberg, M., Lindqvist, D.: Network on chip: An architecture for billion transistor era. In: Proceeding of the IEEE NorChip Conference (2000)Google Scholar
  18. 18.
    Dally, W.J., Towles, B.P.: Principles and practices of interconnection networks. Elsevier, Amsterdam (2004)Google Scholar
  19. 19.
    Henkel, J., Wolf, W., Chakradhar, S.: On-chip networks: A scalable, communication-centric embedded system design paradigm. In: Proceedings 17th International Conference on VLSI Design, IEEE, pp. 845–851 (2004)Google Scholar
  20. 20.
    Ramanujam, R.S., Soteriou, V., Lin, B., Peh, L.-S.: Design of a high-throughput distributed shared-buffer NoC router. In: Proceeding of the 2010 Fourth ACM/IEEE International Symposium on Networks-on-Chip (NOCS), IEEE, pp. 69–78 (2010)Google Scholar
  21. 21.
    Chan, C.-H., Tsai, K.-L., Lai, F., Tsai, S.-H.: A priority based output arbiter for NoC router. In: Proceedings of the Circuits and Systems (ISCAS) on IEEE International Symposium, IEEE, pp. 1928–1931 (2011)Google Scholar
  22. 22.
    Saponara, S., Vitullo, F., Petri, E., Fanucci, L., Coppola, M., Locatelli, R.: Coverage-driven verification of HDL IP cores. In: Conti, M. (ed.) Solutions on embedded systems, pp. 105–119. Springer, New York (2011)CrossRefGoogle Scholar
  23. 23.
    Sgroi, M., Sheets, M., Mihal, A., Keutzer, K., Malik, S., Rabaey, J., Sangiovanni-Vencentelli, A.: Addressing the system-on-a-chip interconnect woes through communication-based design. In: Proceedings of the 38th annual Design Automation Conference, ACM, pp. 667–672 (2001)Google Scholar
  24. 24.
    Bertozzi, D.: Network interface architecture and design issues. Networks on Chips: Technology and Tools, The Morgan Kaufmann Series in Systems on Silicon, pp.147–202 (2006)Google Scholar
  25. 25.
    Zimmermann, H.: OSI reference model–The ISO model of architecture for open systems interconnection. IEEE Trans. Commun. 28(4), 425–432 (1980)CrossRefGoogle Scholar
  26. 26.
    Wang, J., Yang, Z.J.: Design of network adapter compatible OCP for high-throughput NOC. In: Applied Mechanics and Materials, pp. 1341–1346. Trans Tech Publ (2013)Google Scholar
  27. 27.
    Steenhof, F., Duque, H., Nilsson, B., Goossens, K., Llopis, R.P.: Networks on chips for high-end consumer-electronics TV system architectures. In: Proceedings of the conference on Design, automation and test in Europe: Designers’ forum, European Design and Automation Association, pp. 148–153 (2006)Google Scholar
  28. 28.
    Angiolini, F., Meloni, P., Carta, S., Benini, L., Raffo, L.: Contrasting a NoC and a traditional interconnect fabric with layout awareness. In: Proceedings of the conference on Design, automation and test in Europe, European Design and Automation Association, pp. 124–129 (2006)Google Scholar
  29. 29.
    Alliance, O.: Open core protocol specification. In. Release, (2003)Google Scholar
  30. 30.
    Alliance, V.: Virtual component interface standard. http://www.vsi.org/library/specs/summary.html. (2001)
  31. 31.
    Guerrier, P., Greiner, A.: A generic architecture for on-chip packet-switched interconnections. In: Proceedings of the conference on Design, automation and test in Europe, ACM, pp. 250–256 (2000)Google Scholar
  32. 32.
    Ahonen, T., Sigüenza-Tortosa, D.A., Bin, H., Nurmi, J.: Topology optimization for application-specific networks-on-chip. In: Proceedings of the 2004 international workshop on System level interconnect prediction, ACM, pp. 53–60 (2004)Google Scholar
  33. 33.
    ARM, A.: AXI Protocol Specification, version 1.0 www.arm.com, ARM. In. March, (2004)
  34. 34.
    Radulescu, A., Dielissen, J., Goossens, K., Rijpkema, E., Wielage, P.: An efficient on-chip network interface offering guaranteed services, shared-memory abstraction, and flexible network configuration. In: Proceedings of the Design, Automation and Test in Europe Conference and Exhibition, IEEE, pp. 878–883 (2004)Google Scholar
  35. 35.
    Opencores, S.: Wishbone system-on-chip (soc) interconnection architecture for portable ip cores. http://cdn.opencores.org/downloads/wbspec_b3.pdf (2002)
  36. 36.
    Tanenbaum, A.S.: Computer networks, 4th edn. Prentice Hall, Upper Saddle River (2003)zbMATHGoogle Scholar
  37. 37.
    Gangwal, O., Rădulescu, A., Goossens, K., González Pestana, S., Rijpkema, E.: Building predictable systems on chip: An analysis of guaranteed communication in the Æthereal network on chip. Dynamic and Robust Streaming in and between Connected Consumer-Electronic Devices, 1–36 (2005)Google Scholar
  38. 38.
    Radulescu, A., Dielissen, J., Pestana, S.G., Gangwal, O.P., Rijpkema, E., Wielage, P., Goossens, K.: An efficient on-chip NI offering guaranteed services, shared-memory abstraction, and flexible network configuration. Comput.-Aided Des. Integr. Circuits Syst. IEEE Trans. 24(1), 4–17 (2005)CrossRefGoogle Scholar
  39. 39.
    Millberg, M., Nilsson, E., Thid, R., Kumar, S., Jantsch, A.: The Nostrum backbone-a communication protocol stack for networks on chip. In: Proceedings of the VLSI Design on 17th International Conference, IEEE, pp. 693–696 (2004)Google Scholar
  40. 40.
    Radulescu, A., Goossens, K.: Communication services for networks on chip. Domain-Specific Processors: Systems, Architectures, Modeling, and Simulation, 193–213 (2004)Google Scholar
  41. 41.
    Radulescu, A., Dielissen, J., Pestana, S.G., Gangwal, O.P., Rijpkema, E., Wielage, P., Goossens, K.: An efficient on-chip NI offering guaranteed services, shared-memory abstraction, and flexible network configuration. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 24(1), 4–17 (2005)CrossRefGoogle Scholar
  42. 42.
    Goossens, K., Dielissen, J., Radulescu, A.: Æthereal network on chip: concepts, architectures, and implementations. Des. Test Comput. IEEE 22(5), 414–421 (2005)CrossRefGoogle Scholar
  43. 43.
    Scherrer, A., Fraboulet, A., Risset, T.: Hardware wrapper classification and requirements for on-chip interconnects. In: Signaux, Circuits et Systèmes 2004, p. 4Google Scholar
  44. 44.
    Chapiro, D.M.: Globally-Asynchronous Locally-Synchronous Systems. In. Stanford Univ CA Dept of Computer Science (1984)Google Scholar
  45. 45.
    Dally, W.J., Seitz, C.L.: Deadlock-free message routing in multiprocessor interconnection networks. (1988)Google Scholar
  46. 46.
    Dally, W.J., Towles, B.: Route packets, not wires: On-chip interconnection networks. In: Proceedings of the Design Automation Conference, IEEE, pp. 684–689 (2001)Google Scholar
  47. 47.
    Feige, U., Raghavan, P.: Exact analysis of hot-potato routing. In: Proceedings of the Foundations of Computer Science, 33rd Annual Symposium, IEEE, pp. 553–562 (1992)Google Scholar
  48. 48.
    Fleury, E., Fraigniaud, P.: A general theory for deadlock avoidance in wormhole-routed networks. IEEE Trans. Parallel Distrib. Syst. 9(7), 626–638 (1998)CrossRefGoogle Scholar
  49. 49.
    Ciordas, C., Basten, T., Radulescu, A., Goossens, K., Meerbergen, J.: An event-based network-on-chip monitoring service. In: Proceedings of the High-Level Design Validation and Test Workshop on Ninth IEEE International, pp. 149–154 (2004)Google Scholar
  50. 50.
    Sepulveda, J., Flórez, D., Immler, V., Gogniat, G., Sigl, G.: Efficient security zones implementation through hierarchical group key management at NoC-based MPSoCs. Microprocess. Microsyst. 50, 164–174 (2017)CrossRefGoogle Scholar
  51. 51.
    Fiorin, L., Silvano, C., Sami, M.: Security aspects in networks-on-chips: Overview and proposals for secure implementations. In: Proceedings of the Digital System Design Architectures, Methods and Tools. DSD 2007 on 10th Euromicro Conference, IEEE, pp. 539–542 (2007)Google Scholar
  52. 52.
    Fiorin, L., Palermo, G., Lukovic, S., Catalano, V., Silvano, C.: Secure memory accesses on networks-on-chip. Comput. IEEE Trans. 57(9), 1216–1229 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Kapoor, H.K., Rao, G.B., Arshi, S., Trivedi, G.: A security framework for noc using authenticated encryption and session keys. Circuits Syst. Sign. Process. 32(6), 2605–2622 (2013)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Baron, S., Wangham, M.S., Zeferino, C.A.: Security mechanisms to improve the availability of a Network-on-Chip. In: Proceedings of the Electronics, Circuits, and Systems (ICECS) on IEEE 20th International Conference, pp. 609–612 (2013)Google Scholar
  55. 55.
    Ghofrani, A., Parikh, R., Shamshiri, S., DeOrio, A., Cheng, K.-T., Bertacco, V.: Comprehensive online defect diagnosis in on-chip networks. In: VTS, pp. 44–49 (2012)Google Scholar
  56. 56.
    Babaei, S., Mansouri, M., Aghaei, B., Khadem-Zadeh, A.: Online-structural testing of routers in network on chip. World Applied Sci. J. 14(9), 1374–1383 (2011)Google Scholar
  57. 57.
    Alaghi, A., Karimi, N., Sedghi, M., Navabi, Z.: Online NoC switch fault detection and diagnosis using a high level fault model. In: Proceedings of the 22nd IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT 2007), IEEE, pp. 21–29 (2007)Google Scholar
  58. 58.
    Alamian, S.S., Fallahzadeh, R., Hessabi, S., Alirezaie, J.: A novel test strategy and fault-tolerant routing algorithm for NoC routers. In: Proceedings of the 17th CSI International Symposium on Computer Architecture & Digital Systems (CADS 2013), IEEE, pp. 133–136 (2013)Google Scholar
  59. 59.
    Cota, É., de Morais Amory, A., Lubaszewski, M.S.: Test and diagnosis of routers. In: Cota, É. (ed.) Reliability. Availability and serviceability of networks-on-chip, pp. 115–132. Springer, New York (2012)Google Scholar
  60. 60.
    Hosseinabady, M., Dalirsani, A., Navabi, Z.: Using the inter-and intra-switch regularity in NoC switch testing. In: Proceedings of the conference on Design, automation and test in Europe, pp. 361–366. EDA Consortium (2007)Google Scholar
  61. 61.
    Nazari, M., Zolfy Lighvan, M., Daie Koozekonani, Z., Sadeghi, A.: a novel HW/SW based NoC router self-testing methodology. arXiv:1609.04569 (2016)
  62. 62.
    Nazarian, G.: On-line testing of routers in networks-on-chip. Delft University of Technology, Delft (2008)Google Scholar
  63. 63.
    Aghaei, B., Khademzadeh, A., Reshadi, M., Badie, K.: Link testing: a survey of current trends in network on chip. J. Electron. Test. 33, 209–225 (2017)CrossRefGoogle Scholar
  64. 64.
    Aghaei, B., Badie, K., Khademzadeh, A., Reshadi, M.: The cost-effective fault detection and fault location approach for communication channels in NoC. J. Supercomput. 73, 5034–5052 (2017)CrossRefGoogle Scholar
  65. 65.
    Aghaei, B., Khademzadeh, A., Reshadi, M., Badie, K.: A new BIST-based test approach with the fault location capability for communication channels in network-on-chip. J. Electron. Test. 33, 501–513 (2017)CrossRefGoogle Scholar
  66. 66.
    Aghaei, B.: A high fault coverage test approach for communication channels in network on chip. Microelectron. Reliab. 75, 178–186 (2017)CrossRefGoogle Scholar
  67. 67.
    Aghaei, B., Babaei, S.: The new test wrapper design for core testing in Packet-Switched Micro-Network on Chip. In: Proceedings of the 2nd International Conference on Power Electronics and Intelligent Transportation System (PEITS), pp. 19–20 (2009)Google Scholar
  68. 68.
    Amory, A.M., Goossens, K., Marinissen, E.J., Lubaszewski, M., Moraes, F.: Wrapper design for the reuse of a bus, network-on-chip, or other functional interconnect as test access mechanism. Comput Digit Tech IET 1(3), 197–206 (2007)CrossRefGoogle Scholar
  69. 69.
    Cota, É., Carro, L., Lubaszewski, M.: Reusing an on-chip network for the test of core-based systems. ACM Trans Des Autom Electron Syst (TODAES) 9(4), 471–499 (2004)CrossRefGoogle Scholar
  70. 70.
    Xiang, D., Zhang, Y.: Cost-effective power-aware core testing in NoCs based on a new unicast-based multicast scheme. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 30(1), 135–147 (2011)CrossRefGoogle Scholar
  71. 71.
    Fiorin, L., Sami, M.: Fault-Tolerant Network Interfaces for Networks-on-Chip. Depend Secure Comput. IEEE Trans. 11(1), 16–29 (2014)CrossRefGoogle Scholar
  72. 72.
    Thonnart, Y., Beigné, E., Vivet, P.: Design and implementation of a GALS adapter for ANoC based architectures. In: Proceedings of the Asynchronous Circuits and Systems on ASYNC’09 15th IEEE Symposium, IEEE, pp. 13–22 (2009)Google Scholar
  73. 73.
    Matos, D., Carro, L., Susin, A.: Associating packets of heterogeneous cores using a synchronizer wrapper for NoCs. In: Proceedings of the Circuits and Systems (ISCAS) on IEEE International Symposium, IEEE, pp. 4177–4180 (2010)Google Scholar
  74. 74.
    Fattah, M., Daneshtalab, M., Liljeberg, P., Plosila, J.: Transport layer aware design of network interface in many-core systems. In: Proceedings of the Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC) on 7th International Workshop, IEEE, pp. 1–7 (2012)Google Scholar
  75. 75.
    Lee, S.E., Bahn, J.H., Yang, Y.S., Bagherzadeh, N.: A generic network interface architecture for a networked processor array (NePA). In: Proceedings of the International Conference on Architecture of Computing Systems, pp. 247–260. Springer (2008)Google Scholar
  76. 76.
    Sparsø, J., Kasapaki, E., Schoeberl, M.: An area-efficient network interface for a TDM-based network-on-chip. In: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 1044–1047. EDA Consortium (2013)Google Scholar
  77. 77.
    Ruaro, M., Lazzarotto, F.B., Marcon, C.A., Moraes, F.G.: DMNI: A specialized network interface for NoC-based MPSoCs. In: Proceedings of the Circuits and Systems (ISCAS) on IEEE International Symposium, IEEE, pp. 1202–1205 (2016)Google Scholar
  78. 78.
    Bjerregaard, T., Mahadevan, S., Olsen, R.G., Sparso, J.: An OCP compliant network adapter for GALS-based SoC design using the MANGO network-on-chip. In: Proceedings of the System-on-Chip on International Symposium, IEEE, pp. 171–174 (2005)Google Scholar
  79. 79.
    Bjerregaard, T., Sparso, J.: A router architecture for connection-oriented service guarantees in the MANGO clockless network-on-chip. In: Proceedings of the Design, Automation and Test in Europe, IEEE, pp. 1226–1231 (2005)Google Scholar
  80. 80.
    Fiorin, L., Palermo, G., Silvano, C.: A security monitoring service for NoCs. In: Proceedings of the 6th IEEE/ACM/IFIP International Conference on Hardware/Software codesign and system synthesis, ACM, pp. 197–202 (2008)Google Scholar
  81. 81.
    Xia, B., Wu, K., Xiang, C., Yang, M., Liu, P., Yao, Q.: Network interface design based on mutual interface definition. Int. J. High Perform. Syst. Archit. 2(3–4), 168–176 (2010)CrossRefGoogle Scholar
  82. 82.
    Attia, B., Wissem, C., Noureddine, A., Zitouni, A., Torki, K., Tourki, R.: A new pipelined network interface for Network on Chip with latency and jitter optimization. In: Proceedings of the Microelectronics (ICM) on International Conference, IEEE, pp. 1–6 (2011)Google Scholar
  83. 83.
    Chouchene, W., Attia, B., Zitouni, A., Abid, N., Tourki, R.: A low power network interface for network on chip. In: Proceedings of the Systems, Signals and Devices (SSD) on 8th International Multi-Conference, IEEE, pp. 1–6 (2011)Google Scholar
  84. 84.
    Swaminathan, K., Lakshminarayanan, G., Ko, S.-B.: Design and verification of an efficient WISHBONE-based network interface for network on chip. Comput. Electr. Eng. 40(6), 1838–1857 (2014)CrossRefGoogle Scholar
  85. 85.
    Bhojwani, P., Mahapatra, R.: Interfacing cores with on-chip packet-switched networks. In: Proceedings of the VLSI Design on 16th International Conference, IEEE, pp. 382–387 (2003)Google Scholar
  86. 86.
    Lai, Y.-L., Yang, S.-W., Sheu, M.-H., Hwang, Y.-T., Tang, H.-Y., Huang, P.-Z.: A high-speed network interface design for packet-based NoC. In: Proceedings of the Communications, Circuits and Systems on International Conference, IEEE, pp. 2667–2671 (2006)Google Scholar
  87. 87.
    Yang, X., Qing-li, Z., Fang-fa, F., Ming-yan, Y., Cheng, L.: NISAR: An AXI compliant on-chip NI architecture offering transaction reordering processing. In: Proceedings of the ASIC. ASICON’07. 7th International Conference, IEEE, pp. 890–893 (2007)Google Scholar
  88. 88.
    Ebrahimi, M., Daneshtalab, M., Liljeberg, P., Plosila, J., Tenhunen, H.: A high-performance network interface architecture for NoCs using reorder buffer sharing. In: Proceedings of the Parallel, Distributed and Network-Based Processing (PDP), 2010 18th Euromicro International Conference, IEEE, pp. 546–550 (2010)Google Scholar
  89. 89.
    Daneshtalab, M., Ebrahimi, M., Plosila, J., Tenhunen, H.: CARS: Congestion-aware request scheduler for network interfaces in NoC-based manycore systems. In: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 1048–1051. EDA Consortium (2013)Google Scholar
  90. 90.
    Tran, X.-T., Nguyen, T., Phan, H.-P., Bui, D.-H.: AXI-NoC: High-Performance Adaptation Unit for ARM Processors in Network-on-Chip Architectures. IEICE Trans. Fund. Electron. Commun. Comput. Sci. 100(8), 1650–1660 (2017)CrossRefGoogle Scholar
  91. 91.
    Hu, J., Marculescu, R.: Energy-aware mapping for tile-based NoC architectures under performance constraints. In: Proceedings of the 2003 Asia and South Pacific Design Automation Conference, ACM, pp. 233–239 (2003)Google Scholar
  92. 92.
    Vangal, S.R., Howard, J., Ruhl, G., Dighe, S., Wilson, H., Tschanz, J., Finan, D., Singh, A., Jacob, T., Jain, S.: An 80-tile sub-100-w teraflops processor in 65-nm cmos. IEEE J. Solid-State Circuits 43(1), 29–41 (2008)CrossRefGoogle Scholar
  93. 93.
    Bhojwani, P., Mahapatra, R.N.: Core network interface architecture and latency constrained on-chip communication. In: Proceeding of the Quality Electronic Design on ISQED’06. 7th International Symposium, IEEE, pp. 6–363 (2006)Google Scholar
  94. 94.
    Ost, L., Mello, A., Palma, J., Moraes, F., Calazans, N.: MAIA: a framework for networks on chip generation and verification. In: Proceedings of the 2005 Asia and South Pacific Design Automation Conference, ACM, pp. 49–52 (2005)Google Scholar
  95. 95.
    Fiorin, L., Palermo, G., Lukovic, S., Silvano, C.: A data protection unit for NoC-based architectures. In: Proceedings of the 5th IEEE/ACM international conference on Hardware/software codesign and system synthesis, ACM, pp. 167–172 (2007)Google Scholar
  96. 96.
    Pande, P.P., Grecu, C., Ivanov, A., Saleh, R., De Micheli, G.: Design, synthesis, and test of networks on chips. IEEE Des. Test Comput. 22(5), 404–413 (2005)CrossRefGoogle Scholar
  97. 97.
    Furber, S., Bainbridge, J.: Future trends in SoC interconnect. In: Proceedings of the System-on-Chip, International Symposium, IEEE, pp. 183–186 (2005)Google Scholar
  98. 98.
    Tatas, K., Siozios, K., Soudris, D., Jantsch, A.: NoC Verification and Testing. In: Jantsh, A. (ed.) Designing 2D and 3D network-on-chip architectures, pp. 147–159. Springer, New York (2014)CrossRefGoogle Scholar
  99. 99.
    Grammatikakis, M.D., Papadimitriou, K., Petrakis, P., Papagrigoriou, A., Kornaros, G., Christoforakis, I., Tomoutzoglou, O., Tsamis, G., Coppola, M.: Security in MPSoCs: a NoC firewall and an evaluation framework. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(8), 1344–1357 (2015)CrossRefGoogle Scholar
  100. 100.
    Compiler, S.D.: Synopsys Corporation. In. (1999)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Computer Engineering Department, Malekan BranchIslamic Azad UniversityMalekanIran
  2. 2.Computer Engineering Department, Science and Research BranchIslamic Azad UniversityTehranIran
  3. 3.Computer Engineering Department, Urmia BranchIslamic Azad UniversityUrmiaIran
  4. 4.Telecommunication Research CenterTehranIran
  5. 5.Iran University of Medical SciencesTehranIran
  6. 6.Information Technology DepartmentUniversity of Human DevelopmentSulaymaniyahIraq

Personalised recommendations