Advertisement

TASM: technocrat ARIMA and SVR model for workload prediction of web applications in cloud

  • Parminder Singh
  • Pooja Gupta
  • Kiran Jyoti
Article

Abstract

Workload patterns of cloud applications are changing regularly. The workload prediction model is key for auto-scaling of resources in a cloud environment. It is helping with cost reduction and efficient resource utilization. The workload for the web applications is usually mixed for different application at different time span. The single prediction model is not able to predict different kinds of workload pattern of cloud applications. In this paper, an adaptive prediction model has been proposed using linear regression, ARIMA, and support vector regression for web applications. Workload classifier has been proposed to select the model as per workload features. Further the model parameters are selected through a heuristic approach. We have used real trace files to evaluate the proposed model with existing state-of-the-art models. The experiment results describe the significant improvement in root-mean-squared error and mean absolute percentage error metrics, and improve the quality of service of web applications in a cloud environment.

Keywords

Workload prediction Web applications Cloud computing Resource provisioning Elasticity 

References

  1. 1.
    Balbach, S.: ClarkNet web server logs. http://ita.ee.lbl.gov/html/contrib/ClarkNet-HTTP.html (2018). Accessed 25 Feb
  2. 2.
    Bankole, A.A., Ajila, S.A.: Cloud client prediction models for cloud resource provisioning in a multitier web application environment. In: 2013 IEEE 7th International Symposium on Service Oriented System Engineering (SOSE), pp. 156–161. IEEE (2013)Google Scholar
  3. 3.
    Bonvin, N., Papaioannou, T.G., Aberer, K.: Autonomic SLA-driven provisioning for cloud applications. In: Proceedings of the 2011 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp. 434–443. IEEE Computer Society (2011)Google Scholar
  4. 4.
    Calheiros, R.N., Masoumi, E., Ranjan, R., Buyya, R.: Workload prediction using ARIMA model and its impact on cloud applications QoS. IEEE Trans. Cloud Comput. 3(4), 449–458 (2015)CrossRefGoogle Scholar
  5. 5.
    Calzarossa, M.C., Massari, L., Tessera, D.: Workload characterization: a survey revisited. ACM Comput. Surv. (CSUR) 48(3), 48 (2016)CrossRefGoogle Scholar
  6. 6.
    Doshi, P.S., Goel, M., Agarwal, A., Punjabi, K.: Performance provisioning using machine learning based automated workload classification (2018). US Patent App. 15/257,491Google Scholar
  7. 7.
    Dumoulin, J.: NASA web server logs. http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html (2018). Accessed 25 Feb
  8. 8.
    Eldin, A.A., Rezaie, A., Mehta, A., Razroev, S., de Luna, S.S., Seleznjev, O., Tordsson, J., Elmroth, E.: How will your workload look like in 6 years? Analyzing Wikimedia’s workload. In: 2014 IEEE International Conference on Cloud Engineering (IC2E), pp. 349–354. IEEE (2014)Google Scholar
  9. 9.
    Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I.: Above the Clouds: A Berkeley View of Cloud Computing. Report UCB/EECS 28(13), 2009. Department of Electrical Engineering and Computer Sciences, University of California, Berkeley (2009)Google Scholar
  10. 10.
    Gunn, S.R., et al.: Support Vector Machines for Classification and Regression. ISIS technical report 14(1), pp. 5–16 (1998)Google Scholar
  11. 11.
    Halavais, A.M.C.: The slashdot effect: analysis of a large-scale public conversation on the world wide web. PhD Thesis (2001)Google Scholar
  12. 12.
    Hyndman, R.J., Athanasopoulos, G.: Forecasting: Principles and Practice. OTexts (2014)Google Scholar
  13. 13.
    Islam, S., Keung, J., Lee, K., Liu, A.: Empirical prediction models for adaptive resource provisioning in the cloud. Future Gener. Comput. Syst. 28(1), 155–162 (2012)CrossRefGoogle Scholar
  14. 14.
    Jiang, Y., Perng, C.S., Li, T., Chang, R.N.: Cloud analytics for capacity planning and instant VM provisioning. IEEE Trans. Netw. Serv. Manag. 10(3), 312–325 (2013)CrossRefGoogle Scholar
  15. 15.
    Liu, C., Liu, C., Shang, Y., Chen, S., Cheng, B., Chen, J.: An adaptive prediction approach based on workload pattern discrimination in the cloud. J. Netw. Comput. Appl. 80, 35–44 (2017)CrossRefGoogle Scholar
  16. 16.
    Ljung, G.M., Box, G.E.: On a measure of lack of fit in time series models. Biometrika 65(2), 297–303 (1978)CrossRefGoogle Scholar
  17. 17.
    Makridakis, S., Wheelwright, S.C., Hyndman, R.J.: Forecasting Methods and Applications. Wiley, New York (2008)Google Scholar
  18. 18.
    Messias, V.R., Estrella, J.C., Ehlers, R., Santana, M.J., Santana, R.C., Reiff-Marganiec, S.: Combining time series prediction models using genetic algorithm to autoscaling web applications hosted in the cloud infrastructure. Neural Comput. Appl. 27(8), 2383–2406 (2016)CrossRefGoogle Scholar
  19. 19.
    Panneerselvam, J., Liu, L., Antonopoulos, N., Bo, Y.: Workload analysis for the scope of user demand prediction model evaluations in cloud environments. In: Proceedings of the 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing, pp. 883–889. IEEE Computer Society (2014)Google Scholar
  20. 20.
    Patel, J., Jindal, V., Yen, I.L., Bastani, F., Xu, J., Garraghan, P.: Workload estimation for improving resource management decisions in the cloud. In: 2015 IEEE Twelfth International Symposium on Autonomous Decentralized Systems (ISADS), pp. 25–32. IEEE (2015)Google Scholar
  21. 21.
    Roy, N., Dubey, A., Gokhale, A.: Efficient autoscaling in the cloud using predictive models for workload forecasting. In: 2011 IEEE International Conference on Cloud Computing (CLOUD), pp. 500–507. IEEE (2011)Google Scholar
  22. 22.
    Sapankevych, N.I., Sankar, R.: Time series prediction using support vector machines: a survey. IEEE Comput. Intell. Mag. 4(2), 24–38 (2009)CrossRefGoogle Scholar
  23. 23.
    Seber, G.A., Lee, A.J.: Linear Regression Analysis, vol. 329. Wiley, New York (2012)zbMATHGoogle Scholar
  24. 24.
    RC Team, et al.: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2013)Google Scholar
  25. 25.
    Teräsvirta, T., Lin, C.F., Granger, C.W.: Power of the neural network linearity test. J. Time Ser. Anal. 14(2), 209–220 (1993)CrossRefGoogle Scholar
  26. 26.
    Wang, K., Lin, M., Ciucu, F., Wierman, A., Lin, C.: Characterizing the impact of the workload on the value of dynamic resizing in data centers. Perform. Eval. 85, 1–18 (2015)CrossRefGoogle Scholar
  27. 27.
    Wu, C.H., Wei, C.C., Su, D.C., Chang, M.H., Ho, J.M.: Travel time prediction with support vector regression. In: 2003 IEEE Intelligent Transportation Systems, 2003. Proceedings, vol. 2, pp. 1438–1442. IEEE (2003)Google Scholar
  28. 28.
    Xiaofang, Y., Yaonan, W.: Parameter selection of support vector machine for function approximation based on chaos optimization. J. Syst. Eng. Electron. 19(1), 191–197 (2008)CrossRefGoogle Scholar
  29. 29.
    Yan, X., Su, X.: Linear Regression Analysis: Theory and Computing. World Scientific, Singapore (2009)CrossRefGoogle Scholar
  30. 30.
    Yang, J., Yu, T., Jian, L., Qiu, J., Li, Y.: An extreme automation framework for scaling cloud applications. IBM J. Res. Dev. 55(6), 410–421 (2011)CrossRefGoogle Scholar
  31. 31.
    Yin, J., Lu, X., Zhao, X., Chen, H., Liu, X.: BURSE: a bursty and self-similar workload generator for cloud computing. IEEE Trans. Parallel Distrib. Syst. 26(3), 668–680 (2015)CrossRefGoogle Scholar
  32. 32.
    Zhang, H., Jiang, G., Yoshihira, K., Chen, H., Saxena, A.: Intelligent workload factoring for a hybrid cloud computing model. In: 2009 World Conference on Services-I, pp. 701–708. IEEE (2009)Google Scholar
  33. 33.
    Zhang, H., Jiang, G., Yoshihira, K., Chen, H.: Proactive workload management in hybrid cloud computing. IEEE Trans. Netw. Serv. Manag. 11(1), 90–100 (2014)CrossRefGoogle Scholar
  34. 34.
    Zhu, Q., Agrawal, G.: Resource provisioning with budget constraints for adaptive applications in cloud environments. In: Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing, pp. 304–307. ACM (2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Lovely Professional UniversityJalandharIndia
  2. 2.Guru Nanak Dev Engineering CollegeLudhianaIndia

Personalised recommendations