Cluster Computing

, Volume 22, Supplement 6, pp 15367–15378 | Cite as

Construction and application of barrel finishing underlying database platform

  • Wei Gao
  • Shengqiang Yang
  • Jianyan TianEmail author
  • Amit Banerjee
  • Fei Yan


The present methods of data preservation and representation for barrel finishing processes which include paper and electronic documents have several disadvantages such as restrictions in size and complexity, and limitations on query and updation speed. Aiming at these disadvantages, a new database platform for barrel finishing data has been constructed by using database technology and case-based reasoning. The design procedure of the database platform is expounded in detail, covering analysis of database platform requirements, establishment for conceptual model of database data structure, designs for logical model of database data structure, determination for physical model of database data structure, choice for network structure of database platform, data management and storage method. The application results demonstrate that the database platform can ensure the safe and convenient storage as well as the sharing of experimental data of the barrel finishing process. It can also provide guidance and technical information for scientific researchers, experts, technicians, and production site operators to choose the processing technology and the processing parameters reasonably.


Barrel finishing process Database Platform Case-based reasoning E-R model Standard specification 



The authors acknowledge the Shanxi Scholarship Council of China (Grant: 2017-032), the National Natural Science Foundation of China (Grant: U1510118).


  1. 1.
    Guo, D., Sun, Y., Jia, Z.: Methods and research progress of high performance manufacturing. J. Mech. Eng. 50(11), 119–134 (2014)CrossRefGoogle Scholar
  2. 2.
    Hashimoto, F., Yamaguchi, H., Krajnik, P., Wegener, K., Chaudhari, R., Hoffmeister, H.W., et al.: Abrasive fine-finishing technology. CIRP Ann. 65(2), 597–620 (2016)CrossRefGoogle Scholar
  3. 3.
    Mediratta, R., Ahluwalia, K., Yeo, S.H.: State-of-the-art on vibratory finishing in the aviation industry: an industrial and academic perspective. Int. J. Adv. Manuf. Technol. 85(1–4), 415–429 (2016)CrossRefGoogle Scholar
  4. 4.
    Cariapa, V., Park, H., Kim, J., Cheng, C., Evaristo, A.: Development of a metal removal model using spherical ceramic media in a centrifugal disk mass finishing machine. Int. J. Adv. Manuf. Technol. 39(1–2), 92–106 (2008)CrossRefGoogle Scholar
  5. 5.
    Boschetto, A., Bottini, L.: Surface improvement of fused deposition modeling parts by barrel finishing. Rapid Prototyp. J. 21(6), 686–696 (2015)CrossRefGoogle Scholar
  6. 6.
    Vijayaraghavan, V., Castagne, S.: Sustainable manufacturing models for mass finishing process. Int. J. Adv. Manuf. Technol. 86(1–4), 49–57 (2016)CrossRefGoogle Scholar
  7. 7.
    Boschetto, A., Bottini, L.: Surface improvement of fused deposition modeling parts by barrel finishing. Rapid Prototyp. J. 21(6), 686–696 (2015)CrossRefGoogle Scholar
  8. 8.
    Hashemnia, K., Mohajerani, A., Spelt, J.K.: Development of a laser displacement probe to measure particle impact velocities in vibrationally fluidized granular flows. Powder Technol. 235(235), 940–952 (2013)CrossRefGoogle Scholar
  9. 9.
    Perezleguizamo, C.: Autonomous decentralized database system self configuration technology for high response. IEICE Trans. Commun. E99.B(4), 794–802 (2016)CrossRefGoogle Scholar
  10. 10.
    Yao, L.I., Qiang, L., Wei, Z.: CNC cutting database system oriented to service manufacturing. Comput. Integr. Manufac. Syst. 20(9), 2221–2230 (2014)Google Scholar
  11. 11.
    Trumpy, E., Bertani, R., Manzella, A., Sander, M.: The web-oriented framework of the world geothermal production database: a business intelligence platform for wide data distribution and analysis. Renew. Energy 74(5), 379–389 (2015)CrossRefGoogle Scholar
  12. 12.
    Broeders, D., Schrijvers, E., Sloot, B.V.D., Brakel, R.V., Hoog, J.D., Ballin, E.H.: Big data and security policies: towards a framework for regulating the phases of analytics and use of big data. Comput. Law Secur. Rev. 33(3), 309–323 (2017)CrossRefGoogle Scholar
  13. 13.
    Mansouri, Y., Toosi, A.N., Buyya, R.: Data storage management in cloud environments: taxonomy, survey, and future directions. ACM Comput. Surv. 50(6), 1–51 (2017)CrossRefGoogle Scholar
  14. 14.
    Park, J.H., Sung, Y., Sharma, P.K., Jeong, Y.S., Yi, G.: Novel assessment method for accessing private data in social network security services. J. Supercomput. 73(3), 1–19 (2017)CrossRefGoogle Scholar
  15. 15.
    Zhang, J., Leung, Y.: Improved possibilistic c-means clustering algorithms. IEEE Trans. Fuzzy Syst. 12(2), 209–217 (2004)CrossRefGoogle Scholar
  16. 16.
    Shin, K.S., Han, I.: Case-based reasoning supported by genetic algorithms for corporate bond rating. Expert Syst. Appl. 16(2), 85–95 (1999)CrossRefGoogle Scholar
  17. 17.
    Wang, T., Bu, L., Wang, W.: Multi-hierarchy grey relational configuration model of large-scale complex mechanism scheme design based on basic element. Mech. Sci. Technol. Aerosp. Eng. 30(6), 978–979 (2011)Google Scholar
  18. 18.
    Zhenghua, H.U., Meng, L., Wen, Z.: Relational database extension oriented, self-adaptive imagery pyramid model. Acta Geodaetica Et Cartographica Sinica 44(6), 678–685 (2015)Google Scholar
  19. 19.
    Barclay, D.K., Byrne, E.R., Ng, F.K.: Database systems: a real-time database management system for no. 5 ess. Bell Labs Tech. J. 61(9), 2423–2437 (2014)CrossRefGoogle Scholar
  20. 20.
    Chohan, N., Bunch, C., Krintz, C., Canumalla, N.: Cloud platform datastore support. J. Grid Comput. 11(1), 63–81 (2013)CrossRefGoogle Scholar
  21. 21.
    Winkler, R.: An evolving computational platform for biological mass spectrometry: workflows, statistics and data mining with massypup64. Peerj 3(11), e1401 (2015)CrossRefGoogle Scholar
  22. 22.
    Zhang, L., Luo, Y.L., Tao, F., Ren, L., Guo, H.: Key technologies for the construction of manufacturing cloud. Comput. Integr. Manufac. Syst. 16(11), 2510–2520 (2010)Google Scholar
  23. 23.
    Cheung, A.K., Solar-Lezama, A., Madden, S.R.: Optimizing database-backed applications with query synthesis. ACM Sigplan Not. 48(6), 3–14 (2013)CrossRefGoogle Scholar
  24. 24.
    Łatuszko, M.: Cost effective storage space for data cubes. J. Intell. Info. Syst. 48(2), 1–19 (2016)Google Scholar
  25. 25.
    Rodd, S.F., Kulkarni, U.P.: Adaptive self-tuning techniques for performance tuning of database systems: a fuzzy-based approach with tuning moderation. Soft Comput. 19(7), 2039–2045 (2015)CrossRefGoogle Scholar
  26. 26.
    Schweitzer, E., Aurich, J.C.: Continuous improvement of industrial product-service systems. CIRP J. Manuf. Sci. Technol. 3(2), 158–164 (2010)CrossRefGoogle Scholar
  27. 27.
    Denoyer, L., Gallinari, P.: Semi-structured document classification. In: Wang, J. (ed.) Encyclopedia of data warehousing & mining, 2nd edn, pp. 807–827. Information Science Reference, Hershey (2017)Google Scholar
  28. 28.
    Meng, X.: A churn-aware durable data storage scheme in hybrid p2p networks. J. Supercomput. 74(1), 183–204 (2018)CrossRefGoogle Scholar
  29. 29.
    Sánchez, A., Ordinez, L., Firmenich, S., Barry, D., Santos, R.: An expert-driven ontology-based approach to the collaborative acquisition of information. J. Comput. Sci. Technol. 17(2), 127–134 (2017)CrossRefGoogle Scholar
  30. 30.
    Uhlmann, E., Dethlefs, A., Eulitz, A.: Investigation into a geometry-based model for surface roughness prediction in vibratory finishing processes. Int. J. Adv. Manuf. Technol. 75(5–8), 815–823 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Mechanical EngineeringTaiyuan University of TechnologyTaiyuanChina
  2. 2.College of Electrical and Power EngineeringTaiyuan University of TechnologyTaiyuanChina
  3. 3.Mechanical EngineeringPennsylvania State University HarrisburgMiddletownUSA

Personalised recommendations