Cluster Computing

, Volume 22, Supplement 2, pp 4907–4915 | Cite as

Closed-loop subspace identification of multivariable dynamic errors-in-variables models based on ORT

  • Minghong SheEmail author
  • Baocang Ding


In terms of the model of errors-in-variables, this article analyses the causes of deviation based on the existing method of subspace identification in the closed-loop system; then, it puts forward another method of subspace identification with an auxiliary variable based on orthogonal decomposition. The auxiliary variables can be selected and improved by this method, improving the quality of system identification.


Subspace identification Errors-in-variables Orthogonal projection Closed-loop identification Singular value decomposition 



The authors are grateful to the associate editor and the referees for their scrupulous reading and for pointing out several errors in earlier versions of this manuscript. And we gratefully acknowledge the financial supported by the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJ1729403).


  1. 1.
    Liu, T., Shao, C.: An extended closed-loop subspace identification method for error-in-variables systems. Chin. J. Chem. Eng. 20(6), 1136–1141 (2012)CrossRefGoogle Scholar
  2. 2.
    Liu, T., Huang, B., Qin, S.J.: Bias-eliminated subspace model identification under time-varying deterministic type load disturbance. J. Process Control 25, 41–49 (2015)CrossRefGoogle Scholar
  3. 3.
    Danesh Pour, N., Huang, B., Shah, S.L.: Consistency of noise covariance estimation in joint input–output closed-loop subspace identification with application in LQG benchmarking. J. Process Control 19(10), 1649–1657 (2009)CrossRefGoogle Scholar
  4. 4.
    Akhenak, A., Duviella, E., Bako, L., et al.: Online fault diagnosis using recursive subspace identification: application to a dam-gallery open channel system. Control Engineering Practice 21(6), 797–806 (2013)CrossRefGoogle Scholar
  5. 5.
    Mercère, G., Lovera, M.: Convergence analysis of instrumental variable recursive subspace identification algorithms. Automatica 43(8), 1377–1386 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Miller, D.N., de Callafon, R.A.: Subspace identification with eigenvalue constraints. Automatica 49(8), 2468–2473 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Zhao, Y., Qin, S.J.: Subspace identification with non-steady Kalman filter parameterization. J. Process Control 24(9), 1337–1345 (2014)CrossRefGoogle Scholar
  8. 8.
    van der Veen, G.J., van Wingerden, J.W., Bergamasco, M., Lovera, M., Verhaegen, M.: Closed-loop subspace identification methods: an overview. IET Control Theory Appl. 7(10), 1339–1358 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bako, L., Merciare, G., Lecoeuche, S.: On-line structured subspace identification with application to switched linear systems. Int. J. Control 82(8), 1496–1515 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Verhaegen, M.: Application of a subspace model identification technique to identify LTI systems operating in closed-loop. Automatica 29(4), 1027–1040 (1993)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ljung, L., Mckelvey, T.: Subspace Identification from Closed Loop Data. Signal Processing 52(2), 209–215 (1995)CrossRefGoogle Scholar
  12. 12.
    Chou, C.T., Verhaegen, M.: Subspace algorithms for the identification of multivariable dynamic errors-in-variables models. Automatica 33(10), 1857–1869 (1997)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gustafsson, T.: Subspace identification using instrumental variable techniques. Automatica 37(12), 2005–2010 (2001)CrossRefGoogle Scholar
  14. 14.
    Wang, J., Qin, S.J.: A new subspace identification approach based on principal component analysis. J. Process Control 12, 841–855 (2002)CrossRefGoogle Scholar
  15. 15.
    Qin, S.J.: An overview of subspace identification. Comput. Chem. Eng. 30(10–12), 1502–1513 (2006)CrossRefGoogle Scholar
  16. 16.
    Wang, J., Qin, S.J.: Closed-loop subspace identification using the parity space. Automatica 42(2), 315–320 (2006)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Weng, J.H., Loh, C.H.: Recursive subspace identification for on-line tracking of structural modal parameter. Mechanical Systems and Signal Processing 25(8), 2923–2937 (2011)CrossRefGoogle Scholar
  18. 18.
    Huang, B., Ding, S.X., Qin, S.J.: Closed-loop subspace identification: an orthogonal projection approach. J. Process Control 15(1), 53–66 (2005)CrossRefGoogle Scholar
  19. 19.
    Katayama, T., Tanaka, H.: An approach to closed-loop subspace identification by orthogonal decomposition. Automatica 43(9), 1623–1630 (2007)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Katayama, T., Kawauchi, H., Picci, G.: Subspace identification of closed loop systems by the orthogonal decomposition method. Automatica 41(5), 863–872 (2005)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Zhang, P., Yang, D.Y., Chan, W.K., et al.: Adaptive wide-area damping control scheme with stochastic subspace identification and signal time delay compensation. IET Gener. Transm. Distrib. 6(9), 844–852 (2012)CrossRefGoogle Scholar
  22. 22.
    Wang, L.-Y., Zhao, W.-X.: System identification: new paradigms, challenges, and opportunities. Acta Autom. Sin. 39(7), 933–942 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of AutomationChongqing UniversityChongqingChina
  2. 2.Computer CollegeChongqing College of Electronic EngineeringChongqingChina
  3. 3.School of Electronic and Information EngineeringXi’an Jiaotong UniversityXi’anChina

Personalised recommendations