Cluster Computing

, Volume 22, Supplement 6, pp 14877–14888 | Cite as

Hash based manifold learning technique to generating random fields for image segmentation

  • Rambabu PemulaEmail author
  • C. Naga Raju


The manifold learning technique is a class of machine learning techniques that converts the intrinsic geometry of the data from higher to lower dimensional representation by using the manifold distance and preserved in hamming space. It is an offline learning process, so it requires more time and memory. We proposed a new hash based manifold learning technique to generate random fields for image segmentation. The proposed method is a two-step process, first is to find the similarity neighborhood pixels, the second is to construct the weighted matrix. The proposed method requires less time and space comparatively than the existing method, because the manifold structure is directly reconstructed in hamming space, which has been shown in the experimental results on semantic datasets and our own datasets in the form of tables and graphs.


Manifold Learning Occlusion Hashing Segmentation 


  1. 1.
    Rambabu, P., Nagaraju, C.: The optimal thresholding technique for image segmentation using fuzzy otsu method. Int. J. Appl. Eng. Res. 10(13), 33842–33846 (2015)Google Scholar
  2. 2.
    Rambabu, P., Nagaraju, C.: Generation of random fields for object recognization using binarization technique. Int. J. Emerg. Trends Technol. Comput. Sci. 4(5(2)), 8–15 (2015)Google Scholar
  3. 3.
    Chen, Y.-T., Liu, X., Yang, M.-H.: Multi-instance object segmentation with occlusion handling. In: CVPR (2015)Google Scholar
  4. 4.
    Hoiem, D., Efros, A., Hebert, M.: Recovering occlusion boundaries from a single image. In: ICCV (2007)Google Scholar
  5. 5.
    Cordes, K., Scheuermann, B., Rosenhahn, B., Ostermann, J.: Foreground segmentation from occlusions using structure and motion recovery. In: Csurka, G., Kraus, M., Laramee, R.S., Richard, P., Braz, J. (eds.) Computer vision, imaging and computer graphics. Theory and application. Communications in computer and information science, vol. 359, pp. 340–353. Springer, Berlin (2013)Google Scholar
  6. 6.
    Wu, Z., Li, F., Sukthankar, R., Rehg, J.M.: Robust video segment proposals with painless occlusion handling. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, pp. 4194–4203 (2015)Google Scholar
  7. 7.
    Wang, X., Han, T.X., Yan, S.: An HOG-LBP human detector with partial occlusion handling. In: Proceedings of the IEEE 12th International Conference on Computer Vision, Kyoto, pp. 32–39 (2009)Google Scholar
  8. 8.
    Etyngier, P., Segonne, F., Keriven, R.: Shape priors using manifold learning techniques. In: Proceedings of the 2007 IEEE 11th International Conference on Computer Vision, Rio de Janeiro, pp. 1–8 (2007)Google Scholar
  9. 9.
    Aljabar, P., Wolz, R., Rueckert, D.: Manifold learning for medical image registration, segmentation, and classification. In: Machine Learning in Computer-Aided Diagnosis: Medical Imaging Intelligence and Analysis. IGI Global, pp. 351–372 (2012)Google Scholar
  10. 10.
    Etyngier, P., Keriven, R., Segonne, F.: Projection onto a shape manifold for image segmentation with prior. In: Proceedings of the 2007 IEEE International Conference on Image Processing, San Antonio, TX, pp. IV-361–IV-364 (2007)Google Scholar
  11. 11.
    Hoang Duc, A.K., Modat, M., Leung, K.K., Cardoso, M.J., Barnes, J., et al.: Using manifold learning for atlas selection in multi-atlas segmentation. PLoS ONE 8(8), e70059 (2013)CrossRefGoogle Scholar
  12. 12.
    Li, M, Luo, X, Yang, J, Sun, Y.: Applying a locally linear embedding algorithm for feature extraction and visualization of MI-EEG. J. Sens. 2016, Article ID 7481946 (2016)Google Scholar
  13. 13.
    Zhang, L., Shum, H.P.H., Shao, L.: Manifold regularized experimental design for active learning. IEEE Trans. Image Process. 26(2), 969–981 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Ma, J., Li, S., Qin, H., Hao, A.: Unsupervised multi-class co-segmentation via joint-cut over L1-manifold hyper-graph of discriminative image regions. IEEE Trans. Image Process. 26(3), 1216–1230 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Song, X., Jiang, S., Herranz, L.: Multi-scale multi-feature context modeling for scene recognition in the semantic manifold. IEEE Trans. Image Process. 26(6), 2721–2735 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Sharon, R., Francos, J.M., Hagege, R.R.: Geometry and radiometry invariant matched manifold detection. IEEE Trans. Image Process. 26(9), 4363–4377 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Nascimento, J.C., Carneiro, G.: Deep learning on sparse manifolds for faster object segmentation. IEEE Trans. Image Process. 26(10), 4978–4990 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ravì, D., Fabelo, H., Callicò, G.M.: Manifold embedding and semantic segmentation for Intraoperative guidance with hyperspectral brain imaging. IEEE Trans. Med. Imaging 36(9), 1845–1857 (2017)CrossRefGoogle Scholar
  19. 19.
    Pemula, R., Nagaraju, C.: Generation of random fields for image segmentation using manifold learning technique. Int. J. Pattern Recognit. Artif. Intell. 30(10), 1654007 (2016)CrossRefGoogle Scholar
  20. 20.
    Pemula, R., Raju, C.N.: Generation of optimal random fields for image segmentation using fuzzy multi-region technique. In: Proceedings of the 2016 International Conference on Communication and Electronics Systems (ICCES), Coimbatore, pp. 1–6 (2016)Google Scholar
  21. 21.
    Liu, W., Wang, J., Kumar, S., Chang, S.F.: Hashing with graphs. In: Proceedings of the 28th International Conference Machine Learning, June 2011Google Scholar
  22. 22.
    Tomar, V.S., Rose, R.C.: Locality sensitive hashing for fast computation of correlational manifold learning based feature space transformations. In: Proceedings of the Interspeech (2013)Google Scholar
  23. 23.
    Tomar, V.S., Rose, R.C.: Efficient manifold learning for speech recognition using locality sensitive hashing. In: Proceedings of the 2013 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 6995–6999. IEEE (2013)Google Scholar
  24. 24.
    Shen, F., Shen, C., Shi, Q., van den Hengel, A., Tang, Z., Shen, H.T.: Hashing on nonlinear manifolds. IEEE Trans. Image Process. 24(6), 1839–1851 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Shen, F., Shen, C., Shi, Q., Van Den Hengel, A., Tang, Z.: Inductive hashing on manifolds. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, pp. 1562–1569 (2013)Google Scholar
  26. 26.
    Zhu, X., Zhang, L., Huang, Z.: A sparse embedding and least variance encoding approach to hashing. IEEE Trans. Image Process. 23(9), 3737–3750 (2014)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Irie, G., Li, Z., Wu, X.-M., Chang, S.-F.: Locally linear hashing for extracting non-linear manifolds. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2123–2130 (2014)Google Scholar
  28. 28.
    Shen, F., Shen, C., Liu, W., Shen, H.T.: Supervised discrete hashing. In: Proceedings of 28th IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)Google Scholar
  29. 29.
    Li, X., Hu, D., Nie, F.: Large graph hashing with spectral rotation. In: Proceeding of the Thirty-First AAAI conference on Artificial Intelligence (AAAI-17), pp. 2203–2209 (2017)Google Scholar
  30. 30.
    Shen, F., Gao, X., Liu, L., Yang, Y., Shen, H.T.: Deep asymmetric pairwise hashing. In: Proceedings of the ACM International Conference on Multimedia (MM) (2017)Google Scholar
  31. 31.
    Chen, Z., Lu, J., Feng, J., Zhou, J.: Nonlinear structural hashing for scalable video search. IEEE Trans. Circuits Syst. Video Technol. PP(99), 1 (2017)Google Scholar
  32. 32.
    Breiman, L.: Random forest. Mach. Learn. 45(1), 5–32 (2001)CrossRefGoogle Scholar
  33. 33.
    Heath, D., Kasif, S., Salzberg, S.: Induction of oblique decision trees. In: Proceedings of the 13th International Joint Conference Artificial Intelligence (IJCAI), pp. 1002–1007 (1993)Google Scholar
  34. 34.
    Yang, Y., Hallman, S., Ramanan, D., Fowlkes, C.C.: Layered object models for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 34(9), 1731–1743 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer Science & EngineeringJawaharlal Nehru Technology KakinadaKakinadaIndia
  2. 2.Department of Computer Science & EngineeringYSR Engineering College of YV UniversityProddaturIndia

Personalised recommendations