Advertisement

Cluster Computing

, Volume 22, Supplement 2, pp 4883–4892 | Cite as

Analysis and elimination of the return power of the pulse width modulation of the bidirectional full bridge DC–DC converter

  • Wei TengfeiEmail author
  • Wang Xiaolan
Article
  • 129 Downloads

Abstract

In order to eliminate the circulation power bidirectional full bridge DC–DC converter, power analysis of circumfluence phenomenon exists traditional phase shifting control and dual phase shifting control, a kind of inductor current zero crossing control method is proposed, to completely eliminate the phenomenon of flow power. The operating principle of the inductor current zero crossing control is described and analyzed in detail, and the converter operating status is analyzed, establish the mathematical model of transmission power. The influence factors of the maximum transmission power of the forward and the reverse transmission values are discussed. Finally, the experimental results show that the inductor current zero crossing control is feasible.

Keywords

Bidirectional DC–DC converter PWM Power circulating flow Backflow power 

References

  1. 1.
    Schuch, L., Rech, C.: Analysis and design of a new high-efficiency bi-directional ZVT converter for DC bus and battery bank interface. In: IEEE APEC’02. Dallas, pp. 567–573. IEEE (2002)Google Scholar
  2. 2.
    Biao, Z., Qingguang, Y., Liwen, W., et al.: Novel grid-connected UPS system with the electricity feedback function and its distributed logic control strategy. Proc. CSEE 31(31), 85–93 (2011). (in Chinese) Google Scholar
  3. 3.
    Huang, J.C., Li, W.L.: A bidirectional DC-DC converter for fuel cell electric vehicle driving system. IEEE Trans. Electron. 21(4), 950–958 (2006)Google Scholar
  4. 4.
    Chen, G., Lee, Y.S., Xu D., et al.: A novel soft-switching and low-conduction-loss bi-directional DC-DC converter. In: Proceedings of IPEMC. Beijing, China, pp. 1166–1171. IEEE (2000)Google Scholar
  5. 5.
    Wang, K., Lee, F.C., Lai, J.: Operation principle of bidirectional full-bridge DC/DC converter with unified soft-switching scheme and soft-starting capability. In: Proceedings of APEC, New Orleans, pp. 111–118. IEEE (2000)Google Scholar
  6. 6.
    Shigenori, I., Hirofumi, A.: A bidirectional isolated DC-DC converter as a core circuit of the next-generation medium-voltage power conversion system. IEEE Trans. Power Electron. 22(2), 535–542 (2007)Google Scholar
  7. 7.
    Jain, M., Jain, P.K., Daniele, M.: A bi-directional DC-DC converter topology for low power application. IEEE Trans. Power Electron. 15(4), 595–600 (2000)Google Scholar
  8. 8.
    Tong, T.B., Wu, T., Jin, X.M., Chen, Y., et al.: Study of bi-directional DC/DC converter. Proc. CSEE 27(13), 81–86 (2007). (in Chinese) Google Scholar
  9. 9.
    Biao, Z., Qingguang, Y., Liwen, W.: A Z-source bi-directional DC/DC converter and its phase shifting-short control strategy. Proc. CSEE 31(9), 43–49 (2011). (in Chinese) Google Scholar
  10. 10.
    Zhao, C., Xu, D., Fan, H., et al.: A PWM plus phase-shift control bidirectional DC/DC converter. Proc. CSEE 23(10), 72–77 (2003). (in Chinese) Google Scholar
  11. 11.
    Xie, Y.H., Sun, J., James, S.F.: Power flow characterization of a bidirectional galvanically isolated high-power DC/DC converter over a wide operating range. IEEE Trans. Power Electron. 25(1), 54–65 (2010)Google Scholar
  12. 12.
    Kheraluwala, M.N., Gascoigne, R.W., Divan, D.M., et al.: Performance characterization of a high-power dual active bridge DC-to-DC converter. IEEE Trans. Ind. Appl. 28(6), 1294–1301 (1992)Google Scholar
  13. 13.
    Liu, D., Hui, L.: A ZVS bi-directional DC-DC converter for multiple energy storage elements. IEEE Trans. Power Electron. 21(5), 1517–1531 (2006)Google Scholar
  14. 14.
    Hosseini, S.H., Sabahi, M., Goharrizi, A.Y.: Multi-function zero-voltage and zero-current switching phase shift modulation converter using a cycloconverter with bi-directional switches. IET Power Electron. 1(2), 275–286 (2008)Google Scholar
  15. 15.
    Peng, F.Z., Li, H., Su, G.J., et al.: A new ZVS bidirectional DC-DC converters for fuel cell and battery application. IEEE Trans. Power Electron. 19(1), 54–65 (2004)Google Scholar
  16. 16.
    Hua, B., Chris, M.: Eliminate reactive power and increase system efficiency of isolated bidirectional dual-active-bridge DC-DC converters using novel dual-phase-shift control. IEEE Trans. Power Electron. 23(6), 2905–2914 (2008)Google Scholar
  17. 17.
    Mi, C., Bai, H., Wang, C., et al.: Operation, design and control of dual H-bridge-based isolated bidirectional DC-DC converter. IET Power Electron. 1(4), 507–517 (2008)Google Scholar
  18. 18.
    Zhao, B., Yu, Q., Sun, W.: Bi-directional Full-bridge DC-DC converters with dual-phase-shifting control and its backflow power characteristic analysis. Proc. CSEE 31(9), 43–49 (2012). (in Chinese) Google Scholar
  19. 19.
    Chung, I.Y., Liu, W.X., Schoder, K., et al.: Integration of a bi-directional DC-DC converter model into a real-time system simulation of a shipboard medium voltage DC system. Int. J. Electr. Power Syst. Res. 81(4), 1051–1059 (2011)Google Scholar
  20. 20.
    Zhao, B., et al.: High-frequency-link DC transformer based on switched capacitor for medium-voltage DC power distribution application. IEEE Trans. Power Electron. 31(7), 4766–4777 (2016)Google Scholar
  21. 21.
    Hiltunen, J., et al.: Variable-frequency phase shift modulation of a dual active bridge converter. IEEE Trans. Power Electron. 30(12), 7138–7148 (2015)Google Scholar
  22. 22.
    Choi, W., Rho, K., Cho, B.: Fundamental duty modulation of dual-active-bridge converter for wide-range operation. IEEE Trans. Power Electron. 31(6), 4048–4064 (2016)Google Scholar
  23. 23.
    Zanchetta, P., Gerry, D.B., Monopoli, V.G., Clare, J.C., Wheeler, P.W.: Predictive current control for multilevel active rectifiers with reduced switching frequency. IEEE Trans. Ind. Electron. 55(1), 163–172 (2008)Google Scholar
  24. 24.
    Tan, N.M.L., Abe, T., Akagi, H.: Design and performance of a bidirectional isolated DC–DC converter for a battery energy storage system. IEEE Trans. Power Electron. 27(3), 1237–1248 (2012)Google Scholar
  25. 25.
    Iman-Eini, H., Schanen, J.L., Farhangi, S., Roudet, J.: A modular strategy for control and voltage balancing of cascaded H-bridge rectifiers. IEEE Trans. Power Electron. 23(5), 2428–2442 (2008)Google Scholar
  26. 26.
    Zhao, B., Song, Q., Liu, W.: Power characterization of isolated bidirectional dual-active-bridge DC–DC converter with dual-phase-shift control. IEEE Trans. Power Electron. 27(9), 4172–4176 (2012)Google Scholar
  27. 27.
    Oggier, G.G., Garcia, G.O., Oliva, A.R.: Switching control strategy to minimize dual active bridge converter losses. IEEE Trans. Power Electron. 24(7), 1826–1838 (2009)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Electrical and Information EngineeringLanzhou University of TechnologyLanzhouChina

Personalised recommendations