Cluster Computing

, Volume 22, Supplement 2, pp 4849–4858 | Cite as

Stock price prediction based on error correction model and Granger causality test

  • Yang NingEmail author
  • Liu Chun Wah
  • Luo Erdan


The purpose of this study is to investigate the relationship between macroeconomic variables (interest rate, money supply, exchange rate, inflation rate) and overall market return in Hong Kong and Shanghai. The relationship is test by using APT, VECM and Granger-Causility test. Pre-tests of unit root and cointegration are the way to process monthly data in this paper. Results: There do exist an relationship between the selected macroeconomic variables and stock market return in Hong Kong and Shanghai in the long and short period. This paper implies that the investors who are interested in Chinese stock market should be prepared to invest for the long-term. But in Hong Kong stock market, the investors not only focus on the long-term but also focus on the short-term.


Cointegration test Granger-causality Macroeconomic variables Stock market return Unit root test 


  1. 1.
    Clare, A.D., Thomas, S.H.: Macroeconomic factors, the APT and the UK stockmarket. J. Bus. Financ. Account. 21(3), 309–330 (1994)Google Scholar
  2. 2.
    Field, A.J.: Asset exchanges and the transactions demand for money. Am. Econ. Rev. 74(1), 43–59 (1984)Google Scholar
  3. 3.
    Solnik, B.: International arbitrage pricing theory. J. Financ. 38(2), 449–457 (1983)Google Scholar
  4. 4.
    Granger, C.W.J.: Causality, cointegration, and control. J. Econ. Dyn. Control 12(2–3), 551–559 (1988)Google Scholar
  5. 5.
    Chen, N.F., Roll, R., Ross, S.A.: Economic forces and the stock market. J. Bus. 59, 383–403 (1986)Google Scholar
  6. 6.
    Fama, E.F., Schwert, G.W.: Asset returns and inflation. J. Financ. Econ. 5, 115–146 (1977)Google Scholar
  7. 7.
    Fama, E.F., French, K.R.: The capital asset pricing model: theory and evidence. J. Econ. Perspect. 18(3), 25–46 (2004)Google Scholar
  8. 8.
    Fama, E.F.: Stock returns, expected returens and real activity, pp. 1089–1108. J. Financ., XLV (1990)Google Scholar
  9. 9.
    Homa, K.E., Jaffee, D.M.: The supply of money and common stock prices. J. Financ. 26(5), 1045–1066 (1971)Google Scholar
  10. 10.
    Kwon, C.S., Hin, T.S.: Cointegration and causality between macroeconomic variables and stock market return. Global Financ. J. 10, 78–81 (1999)Google Scholar
  11. 11.
    Adler, M., Dumas, B.: International portfolio choice and corporation finance: a synthesis. J. Financ. 38(3), 925–984 (1983)Google Scholar
  12. 12.
    Shubita, M.F., Al-Sharkasm, A.A.: A study of size effect and macroeconomics factors in New York stock exchange stock returns. Appl. Econom. Int. Dev. 10, 137–151 (2010)Google Scholar
  13. 13.
    Liu, M.-H., Shrestha, K.M.: Analysis of the long-term relationship between macroeconomic variables and the Chinese stock market using heteroscedastic cointegration. Manag. Financ. 34(11), 744–755 (2008)Google Scholar
  14. 14.
    Naik, P.K.: Does stock market respond to economic fundamentals? time-series analysis from Indian data. J. Appl. Econ. Bus. Res. 3(1), 34–50 (2013)Google Scholar
  15. 15.
    Ratanapakorn, O., Sharma, S.C.: Dynamic analysis between the US stock returns and the macroeconomic variables. Appl. Financ. Econ. 17, 369–377 (2007)Google Scholar
  16. 16.
    Jorion, Philippe: The pricing of exchange rate risk in the stock market. J. Financ. Quant. Anal. 26(3), 363–376 (1991)Google Scholar
  17. 17.
    Geske, R., Roll, R.: The fiscal and monetary linkage between stock returns and inflation. J. Financ. 38(1), 1–33 (1983)Google Scholar
  18. 18.
    Rogalski, R.J., Vinso, J.D.: Stock returns, money supply and the direction of causality. J. Financ. 32(4), 1017–1030 (1977)Google Scholar
  19. 19.
    Roll, R., Ross, S.A.: An empirical investigation of the arbitrage pricing theory. J. Financ. 35(5), 1073–1103 (1980)Google Scholar
  20. 20.
    Hosseini, S.M., Ahmad, Z., Lai, Y.W.: The role of macroeconomic variables on stock market index in China and India. Int. J. Econ. Financ. 3(6), 233–243 (2011)Google Scholar
  21. 21.
    Mukherjee, T.K., Naka, A.: Dynamic relations between macroeconomic variables and the Japanese stock market: an application of a vector error correction model. J. Financ. Res. 18(2), 223–237 (1995)Google Scholar
  22. 22.
    Singh, T., Mehta, S., Varsha, M.S.: Macroeconomic factors and stock returns: evidence from Taiwan. J. Econ. Int. Financ. 2(4), 217–227 (2011)Google Scholar
  23. 23.
    Hassan, W.U., Awais, M.: Behavior of macroeconomic forces to predict stock returns: empirical evidence from global financial markets. Eur. Acad. Res. 3(3), 3674–3698 (2015)Google Scholar
  24. 24.
    Hamza, R., Muhammad, K., Arunkumar, N., González, G.R.: Hash based encryption for keyframes of diagnostic hysteroscopy. IEEE Access (2017). Google Scholar
  25. 25.
    Fernandes, S.L., Gurupur, V.P., Sunder, N.R., Arunkumar, N., Kadry, S. A novel nonintrusive decision support approach for heart rate measurement. Pattern Recognit. Lett. (2017).
  26. 26.
    Arunkumar, N., Ramkumar, K., Venkatraman, V., Abdulhay, E., Fernandes, S.L., Kadry, S., Segal, S.: Classification of focal and non focal EEG using entropies. Pattern Recogn Lett 94, 112–117 (2017)Google Scholar
  27. 27.
    Arunkumar, N., Kumar, K.R., Venkataraman, V.: Automatic detection of epileptic seizures using new entropy measures. J. Med. Imaging Health Inf. 6(3), 724–730 (2016)Google Scholar
  28. 28.
    Arunkumar, N., Ram Kumar, K., Venkataraman, V.: Automatic detection of epileptic seizures using permutation entropy, Tsallis entropy and Kolmogorov complexity. J. Med. Imaging Health Inf. 6(2), 526–531 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of MacauTaipaChina

Personalised recommendations