Cluster Computing

, Volume 22, Supplement 3, pp 7629–7635 | Cite as

Energy constrained clustering routing method based on particle swarm optimization

  • Feng GaoEmail author
  • Wancheng Luo
  • Xinqiang Ma


Wireless sensor networks are made up of a large number of wireless sensor nodes which are exploited to sense parameters in environment such as temperature, moisture level, pressure, light intensity, vibration, and so on. In order to effectively reduce energy consumption of WSN, this paper proposes a novel energy constrained clustering routing method based on particle swarm optimization. The simulation results show that proposed method can achieve better overall performance for both energy consumption and network lifetime.


Wireless sensor networks Energy constrained Clustering routing algorithm Particle swarm optimization Fitness 



This paper Supported by the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No.KJ1711278).


  1. 1.
    Zimos, E., Toumpakaris, D., Munteanu, A., Deligiannis, N.: Multiterminal source coding with copula regression for wireless sensor networks gathering diverse data. IEEE Sens. J. 17(1), 139–150 (2017)CrossRefGoogle Scholar
  2. 2.
    Zhu, J., Jiang, D.D., Ba, S.W., Zhang, Y.P.: A game-theoretic power control mechanism based on hidden Markov model in cognitive wireless sensor network with imperfect information. Neurocomputing 220, 76–83 (2017)CrossRefGoogle Scholar
  3. 3.
    Yan, X., Zhang, L., Wu, Y., Luo, Y., Zhang, X.: Secure smart grid communications and information integration based on digital watermarking in wireless sensor networks. Enterp. Inf. Sys. 11(2), 223–249 (2017)CrossRefGoogle Scholar
  4. 4.
    Portocarrero, J.M.T., Delicato, F.C., Pires, P.E., Costa, B., Li, W., Si, W.S., Zomaya, A.Y.: RAMSES: a new reference architecture for self-adaptive middleware in wireless sensor networks. Ad Hoc Netw. 55, 3–27 (2017)CrossRefGoogle Scholar
  5. 5.
    Mangia, M., Bortolotti, D., Pareschi, F., Bartolini, A., Benini, L., Rovatti, R., Setti, G.: Zeroing for HW-efficient compressed sensing architectures targeting data compression in wireless sensor networks. Microprocess. Microsyst. 48, 69–79 (2017)CrossRefGoogle Scholar
  6. 6.
    Le, D.T., Duc, T.L., Zalyubovskiy, V.V., Kim, D.S., Choo, H.: Collision-tolerant broadcast scheduling in duty-cycled wireless sensor networks. J. Parallel Distrib. Comput. 100, 42–56 (2017)CrossRefGoogle Scholar
  7. 7.
    Kumar, V., Dhok, S.B., Tripathi, R., Tiwari, S.: Cluster size optimisation with Tunable Elfes sensing model for single and multi-hop wireless sensor networks. Int. J. Electron. 104(2), 312–327 (2017)CrossRefGoogle Scholar
  8. 8.
    Gope, P., Lee, J., Quek, T.Q.S.: Resilience of DoS attacks in designing anonymous user authentication protocol for wireless sensor networks. IEEE Sens. J. 17(2), 498–503 (2017)CrossRefGoogle Scholar
  9. 9.
    Gong, H.Y., Fu, L.Y., Fu, X.Z., Zhao, L.T., Wang, K.N., Wang, X.B.: Distributed multicast tree construction in wireless sensor networks. IEEE Trans. Inf. Theory 63(1), 280–296 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gholipour, M., Haghighat, A.T., Meybodi, M.R.: Hop-by-Hop congestion avoidance in wireless sensor networks based on genetic support vector machine. Neurocomputing 223, 63–76 (2017)CrossRefGoogle Scholar
  11. 11.
    Costa, D.G., Vasques, F., Portugal, P.: Enhancing the availability of wireless visual sensor networks: selecting redundant nodes in networks with occlusion. Appl. Math. Model. 42, 223–243 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Zahedi, Z.M., Akbari, R., Shokouhifar, M., Safaei, F., Jalali, A.: Swarm intelligence based fuzzy routing protocol for clustered wireless sensor networks. Expert Syst. Appl. 55, 313–328 (2016)CrossRefGoogle Scholar
  13. 13.
    Tang, C.W., Tan, Q., Han, Y.N., An, W., Li, H.B., Tang, H.: An energy harvesting aware routing algorithm for hierarchical clustering wireless sensor networks. Ksii Trans. Internet Inf. Syst. 10(2), 504–521 (2016)Google Scholar
  14. 14.
    Shwe, H.Y., Kumar, A., Chong, P.H.J.: Building efficient multi-level wireless sensor networks with cluster-based routing protocol. KSII Trans. Internet Inf. Syst. 10(9), 4272–4286 (2016)Google Scholar
  15. 15.
    Sabet, M., Naji, H.: An energy efficient multi-level route-aware clustering algorithm for wireless sensor networks: a self-organized approach. Comput. Electr. Eng. 56, 399–417 (2016)CrossRefGoogle Scholar
  16. 16.
    Ren, P., Qian, J.S.: Energy-aware and load-balancing cluster routing protocol for wireless sensor networks in long-narrow region. J. Intell. Fuzzy Syst. 31(4), 2257–2269 (2016)CrossRefGoogle Scholar
  17. 17.
    Meng, X.L., Shi, X.C., Wang, Z., Wu, S., Li, C.L.: A grid-based reliable routing protocol for wireless sensor networks with randomly distributed clusters. Ad Hoc Netw. 51, 47–61 (2016)CrossRefGoogle Scholar
  18. 18.
    Julie, E.G., Tamilselvi, S., Robinson, Y.H.: Performance analysis of energy efficient virtual back bone path based cluster routing protocol for wsn. Wirel. Pers. Commun. 91(3), 1171–1189 (2016)CrossRefGoogle Scholar
  19. 19.
    Jannu, S., Jana, P.K.: A grid based clustering and routing algorithm for solving hot spot problem in wireless sensor networks. Wirel. Netw. 22(6), 1901–1916 (2016)CrossRefGoogle Scholar
  20. 20.
    Huynh, T.T., Dinh-Duc, A.V., Tran, C.H.: Delay-constrained energy-efficient cluster-based multi-hop routing in wireless sensor networks. J. Commun. Netw. 18(4), 580–588 (2016)CrossRefGoogle Scholar
  21. 21.
    Ding, Y.S., Chen, R., Hao, K.R.: A rule-driven multi-path routing algorithm with dynamic immune clustering for event-driven wireless sensor networks. Neurocomputing 203, 139–149 (2016)CrossRefGoogle Scholar
  22. 22.
    Aslam, M., Munir, E.U., Rafique, M.M., Hu, X.P.: Adaptive energy-efficient clustering path planning routing protocols for heterogeneous wireless sensor networks. Sustain. Comput. Inform. Syst. 12, 59–73 (2016)Google Scholar
  23. 23.
    Abasikeles-Turgut, I., Hafif, O.G.: NODIC: a novel distributed clustering routing protocol in WSNs by using a time-sharing approach for CH election. Wirel. Netw. 22(3), 1023–1034 (2016)CrossRefGoogle Scholar
  24. 24.
    Kuila, P., Gupta, S.K., Jana, P.K.: A novel evolutionary approach for load balanced clustering problem for wireless sensor networks. Swarm Evolut. Comput. 12, 48–56 (2013)CrossRefGoogle Scholar
  25. 25.
    Chor, P.L., Can, F., Jim, M.N., Yew, H.A.: Efficient load-balanced clustering algorithms for wireless sensor networks. Comput. Commun. 31(4), 750–759 (2008)CrossRefGoogle Scholar
  26. 26.
    Bari, A., Jaekel, A., Bandyopadhyay, S.: Clustering strategies for improving the lifetime of two-tiered sensor networks. Comput. Commun. 31(14), 3451–3459 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Software EngineeringChongqing University of Arts and ScienceChongqingChina

Personalised recommendations