Advertisement

Cluster Computing

, Volume 22, Supplement 6, pp 14495–14504 | Cite as

Patch based fast noise level estimation using DCT and standard deviation

  • S. B. MohanEmail author
  • T. A. Raghavendiran
  • R. Rajavel
Article
  • 100 Downloads

Abstract

Image noise level estimation play a vital role in image processing applications such as medical imaging and celestial imaging. The noise level estimation of image is hard to estimate due to texture of image. Conventional methods segment image in blocks to identify noise in image. The method provides erroneous noise detection in high textured image such as medical images. In this paper, we propose a Patch based DCT (PDCT) model to decompose image in spatial domain in parallel pool loop for medical image slices. The PDCT model split noisy image into patches to exhibit noise in image. The PDCT model estimates noise level accurately in complex images compared to conventional noise level estimation methods such as principle component analysis and weak textured patch methods.

Keywords

Noise level estimation DCT White Gaussian noise Average estimation error Image denoising 

Notes

Acknowledgements

This research was supported by Chase Technologies. We thank Mr. A. Vignesh and Mr. E. Ganesh who provide insight and expertise that greatly assisted this research.

References

  1. 1.
    Buades, A., Coll, B., Morel, M.: A review of image de-noising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image de-noising with block-matching and 3rd filtering. In: Electronic Imaging 2006, pp. 606414–606414. International Society for Optics and Photonics, Bellingham (2006)Google Scholar
  3. 3.
    Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image de-noising by sparse 3-D transform domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Elad, M., Aharon, M.: Image denoising via sparse Andredundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Lebrun, M., Buades, A., Morel, M.: A non local Bayesian image de-noising algorithm. SIAM J. Imaging Sci. 6(3), 1665–1688 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Gilboa, G., Sochen, N., Zeevi, Y.Y.: Estimation of optimal PDE-based de-noising in the SNR sense. IEEE Trans. Image Process. 15, 2269–2280 (2006)CrossRefGoogle Scholar
  7. 7.
    Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)CrossRefGoogle Scholar
  8. 8.
    Chen, G., Heng, P.-A., Xu, L.: Projection-embedded by learning algorithm for Gaussian mixture-based clustering. In: Applied Informatics, vol. 1, pp. 1–20. Springer, BerlinGoogle Scholar
  9. 9.
    Rosin, P.: Thresholding for change detection. In: 6th International Conference on Computer Vision, Bombay, India, pp. 274–279 (1998)Google Scholar
  10. 10.
    Forstner W.: A framework for low level feature extraction. European Conference on Computer Vision, pp. 383–394 (1994)Google Scholar
  11. 11.
    Horn, B.K., Schunck, B.G.: Determining optical flow. In: 1981 Technical Symposium East, vol. 1, pp. 319–333. International Society for Optics and Photonics, Bellingham (1981)CrossRefGoogle Scholar
  12. 12.
    Scharr, H., Spies, H.: Accurate optical flow in noisy image sequences using flow adapted anisotropic diffusion. Signal Process. Image Commun. 20(6), 537–553 (2005)CrossRefGoogle Scholar
  13. 13.
    Walker, J.: Combined image compressor and De-noiser based on tree adapted wavelet shrinkage. Opt. Eng. 41, 1520 (2002)CrossRefGoogle Scholar
  14. 14.
    Zhu, X., Milanfar, P.: A no-reference sharpness metric sensitive to blur and noise. In: 1st International Workshop Quality Multimedia Experience, San Diego, CA, pp. 64–69 (2009)Google Scholar
  15. 15.
    Jiang, P., Zhang, J.: No-reference image quality assessment based on local maximum gradient. J. Electron. Inf. Technol. 37, 2587–2593 (2015)Google Scholar
  16. 16.
    Immerkær, J.: Fast noise variance estimation. Comput. Vis. Image Understand. 64, 300–302 (1996)CrossRefGoogle Scholar
  17. 17.
    Liu, A.: A fast method of estimating Gaussian noise. In: 1st International Conference on Information Science and Engineering, pp. 441–444 (2009)Google Scholar
  18. 18.
    Rank, K., Lendl, M., Unbehauen, R.: Estimation of image noise variance. IEEE Vis. Image Signal Process. 146(2), 80–84 (1999)CrossRefGoogle Scholar
  19. 19.
    Russo, F.: Gaussian noise estimation in digital images using nonlinear sharpening and genetic optimization. In: Instrumentation & Measurement Technology Conference, pp. 1–5 (2007)Google Scholar
  20. 20.
    Donoho, D.L., Johnstone, I.M.: Ideal spatial by wavelet shrinkage. Biometrika 81, 425–455 (1994)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Khalil, H., Rahmat, R., Mahmoud, W.: Estimation of noise in gray-scale and colored Images using median absolute deviation (MAD). In: 3rd International Conference on Geometric Model Imaging, London, UK, pp. 92–97 (2008)Google Scholar
  22. 22.
    Ghazi, M.M., Erdogan, H.: Image noise level estimation based on higher-order statistics. Multimed. Tools Appl. 76(2), 2379–2397 (2016)CrossRefGoogle Scholar
  23. 23.
    Tai, S.C., Yang, S.M.: A fast method for image noise estimation using Laplacian operator and adaptive edge detection. In: 3rd International Symposium on Communications, Control and Signal Processing, pp. 1077–1081 (2008)Google Scholar
  24. 24.
    Huang, X., Chen, L., Tian, J., Zhang, X., Fu, X.: Blind noisy image quality assessment using block homogeneity. Comput. Electr. Eng. 40(3), 796–807 (2013)CrossRefGoogle Scholar
  25. 25.
    Deledalle, C.A., Denis, L., Tupin, F.: Iterative weighted maximum likelihood denoising with probabilistic patch-based weights. IEEE Trans. Image Process. 18(12), 2661–2672 (2009)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kervrann, C., Boulanger, J.: Optimal spatial adaptation for patch-based image denoising. IEEE Trans Image Process. 15(10), 2866–2878 (2006)CrossRefGoogle Scholar
  27. 27.
    Zoran, D., Weiss, Y.: Scale invariance and noise in natural Images. In: IEEE 12th International Conference on Computer Vision (2009)Google Scholar
  28. 28.
    Pyatykh, S., Hesser, J., Zheng, L.: Image noise level estimation by principal component analysis. IEEE Trans. Image Process. 22, 687–699 (2013)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Liu, X., Tanaka, M., Okutomi, M.: Noise level estimation using weak textured patches of a single noisy image. In: IEEE International Conference on Image Processing, Orlando, USA, pp. 665–668 (2012)Google Scholar
  30. 30.
    Gonzales, R.V., Woods, R.E., Eddins, S.L.: Digital Image Processing Using MATLAB. lowprice edn. Pearson Education, New DelhiGoogle Scholar
  31. 31.
    Liu, C., Szeliski, R., Kang, S.B.: Automatic estimation and removal of noise from a single image. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 299–314 (2008)CrossRefGoogle Scholar
  32. 32.
    Cui, G., Feng, H., Xu, Z., Li, Q., Chen, Y.: No-reference image noise estimation based on noise level accumulation. Opt. Rev. (2016).  https://doi.org/10.1007/s10043-016-0219-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. B. Mohan
    • 1
    Email author
  • T. A. Raghavendiran
    • 2
  • R. Rajavel
    • 3
  1. 1.Department of Electronics and Communication EngineeringDhaanish Ahmed College of EngineeringChennaiIndia
  2. 2.Department of Electrical and Electronics EngineeringAnand Institute of Higher TechnologyChennaiIndia
  3. 3.Department of Electronics and Communication EngineeringSSN College of EngineeringChennaiIndia

Personalised recommendations