Cluster Computing

, Volume 22, Supplement 6, pp 14451–14460 | Cite as

Influence mechanism of repetition frequency on pulse position modulation in deep space laser communication

  • Weida ZhanEmail author
  • Ziqiang Hao
  • Rui Li
  • Yanfeng Tang
  • Yijun Wang


Taking the deep space laser communication as the application background, based on multi-pulse position modulation and differential pulse position modulation, a new differential multi-pulse position modulation (DMPPM) mode is proposed. The DMPPM theory model is set up, and a comparative study and analysis of four modulation schemes of PPM, DPPM, MPPM and DMPPM has been developed. The simulation results show that the repetition rate of the pulse laser has a great influence on the four modulation modes. DMPPM has the characteristics of the smallest average symbol length, the largest average transmitting power, the maximum peak transmitting power, the maximum unit transmission rate, the smallest bandwidth demand and a higher transmission efficiency. The analysis shows that DMPPM is greatly influenced by the repetition frequency of the laser. It is very necessary to improve the repetition rate of the laser under the premise of ensuring the peak power of the pulse laser. DMPPM can become one of the excellent modulation schemes for deep space laser communication.


Space optical communication Repetition frequency PPM DPPM MPPM DMPPM 



Science and Technology Department of Jilin Province (20170204047GX).


  1. 1.
    Song, T., Ma, J., Tan, L., et al.: Experiment design and development of the lunar laser communication demonstration in USA. Laser Optoelectron. Prog. 51, 04004 (2014)Google Scholar
  2. 2.
    Guo, L., Zhang, L., Du, Z., et al.: A survey of lunar laser communications demonstration of NASA. J. Spacecr. TT&C Technol. 34(1), 87–94 (2015)Google Scholar
  3. 3.
    Jiang, H., Yan, A., Zhang, Y., et al.: Analysis of the status quo, development trend and key technologies of space laser communication. J. Spacecr. TT&C Technol. 34(3), 207–217 (2015)Google Scholar
  4. 4.
    Bai, S., Wang, J., Zhang, L., et al.: Development progress and trends of space optical communications. Laser Optoelectron. Prog. 52, 070001 (2015)CrossRefGoogle Scholar
  5. 5.
    Wu, N., Wang, X., Yao, K., et al.: Carrier-less position/phase modulation for visible light communications. J. Electron. Inf. Technol. 89(2), 360–366 (2017)CrossRefGoogle Scholar
  6. 6.
    Ke, X., Chen, J.: Performance comparison of various pulse position modulation in wireless laser communication. Laser Technol. 36(1), 67–76 (2012)Google Scholar
  7. 7.
    Qin, L., Ke, X.: A study of mapping scheme for dual-pulse MPPM. J. Xi’an Univ. Technol. 23(3), 269–272 (2007)Google Scholar
  8. 8.
    Song, X., Jia, S., Zhao, Z., et al.: Dual duration differential pulse position modulation based on visible light communication. J. Acad. Armored Force Eng. 30(3), 79–82 (2016)Google Scholar
  9. 9.
    Zhao, L., Ke, X., Liu, J.: Research on differential pulse-position modulation in optical wireless communication. Laser J. 28(2), 63–64 (2007)Google Scholar
  10. 10.
    Ding, D., Ke, X.: Design of PPM for laser communication in atmosphere. Free-space Opt. Commun. 1, 50–52 (2005)Google Scholar
  11. 11.
    Rouissat, M., Borsali, R.A.: Differential two-pulses position modulation for synchronized wireless optical communication, pp. 252–257. Springer, Berlin (2013)Google Scholar
  12. 12.
    Rouissat, M., Borsali, R.A., et al.: A new modified MPPM for high-speed wireless optical communication systems. ETRI J. 35(2), 188–192 (2013)CrossRefGoogle Scholar
  13. 13.
    Wang, Y., Zhang, H., Zhang, M., et al.: New pulse-position modulation technology in deep-space optical communications. Chin. J. Lasers 43(5), 0505008.1–0505008.9 (2016)CrossRefGoogle Scholar
  14. 14.
    Ren, X., Li, H., Wang, Y., et al.: Effect for modulation rate of pulsed fiber laser on pulse position modulation. Acta Opt. Sin. 34(7), 0706002.1–0706002.8 (2014)Google Scholar
  15. 15.
    Qin, L., Du, Y., Ke, X., et al.: Implementation of coding and decoding system for three-pulse MPPM in atmosphere laser communication. Semicond. Optoelectron. 29(3), 403–406 (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Weida Zhan
    • 1
    Email author
  • Ziqiang Hao
    • 1
  • Rui Li
    • 1
  • Yanfeng Tang
    • 1
  • Yijun Wang
    • 1
  1. 1.School of Electronic & Information EngineeringChangchun University of Science and TechnologyChangchunChina

Personalised recommendations